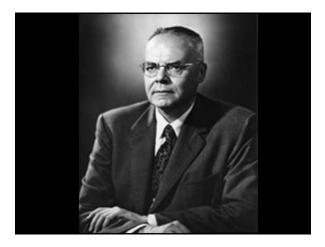
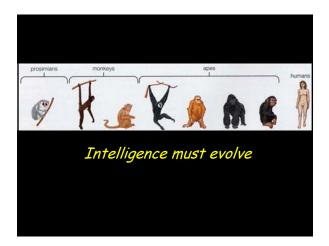


Shapley Lecture American Astronomical Society University of Houston, Clear Lake

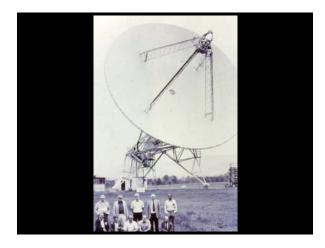
23 March, 2009

Searching for Unicorns and Extraterrestrial Civilizations


Bob Rood University of Virginia

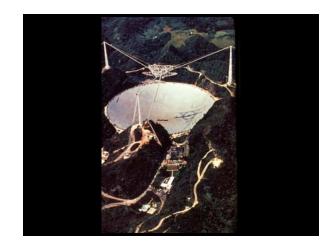

Ok, Frank, How much will it cost? and Is there any chance of success?

Technold must emerge

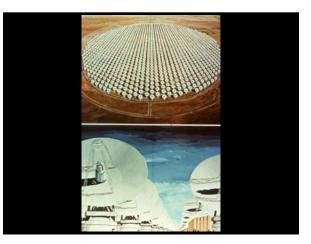

ation remains det

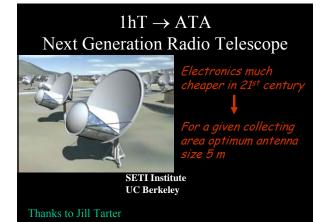
The Drake Equation

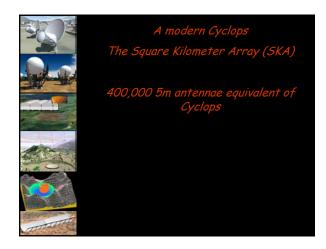
The number of broadcasting civilizations, N is:

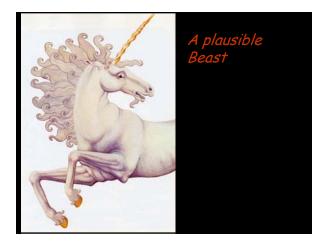

$$N = R_* f_p n_e f_l f_i f_c L$$

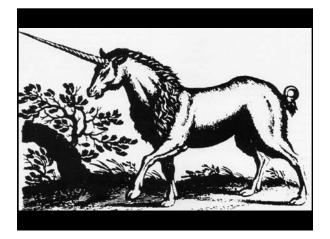
Conclude: N is plausibly > 1and possibly > million

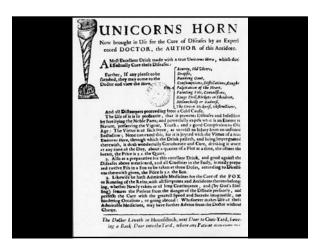












Lorenzo de Medici owned a unicorn horn

What's in it for ET to send signals that a primitive civilization like us might detect?

What are the habits of these unicorns?

The Drake Equation

The number of broadcasting civilizations, N is:

 $N = R_* f_p \, n_e f_l f_i f_c \, L$

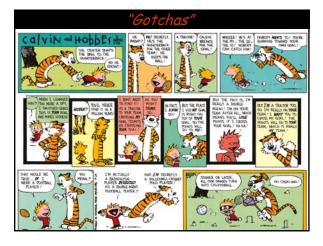
$N = R_* f_p n_e f_l f_i f_c L$

 R_* is known: 1—10 stars/year n_e is almost certainly < 1 all f's are \leq 1, so $N \approx L$ L could be 10⁹ years

$N = R_* f_p \, n_e f_l f_i f_c \, L$

Conclusions: • Communicating civilizations are plausible • N is large only if L is large • Even if L is large N may not be large

but beware of:


Spin

"All of these newly discovered planets make ET life more likely" Bull

Hidden subscripts

For example:

• If R_* is really $R_{solar-type \ star \ 5Gyr \ old \ closer \ than \ 1 \ kpc}$ then $R_* \approx 10^{-3} \ stars/year$

Without Jupiter there would be a major extinction event every <u>100,000 y</u>ears

My spin on this

There is no significant chance for success unless L is very large --millions or billions of year as a technological civilization

At a 100 years we are probably the youngest TC in the Galaxy

3 other simple results

• Unless civilizations which have a cosmic limit on L are very rare (P << 10⁻³), they are the ones we are most likely to contact.

- We are most likely to contact the most "luminous" civilizations.
- "They" know we're here only if there are 10's of millions of civilizations.

What will a long-lived, power rich, technological civilization look like? They will conserve energy, i.e., the 1st law of thermodynamics

They will obey the 2nd law of thermodynamics, i.e., they must deal with their waste energy

- Directed beacon costs \$10⁶/year
 - o They know we're here
 - Closer than 100 light years
 - > 10's of millions of civilizations
 - o They know an earthlike planet is here
 - May need to broadcast for 10⁸ years

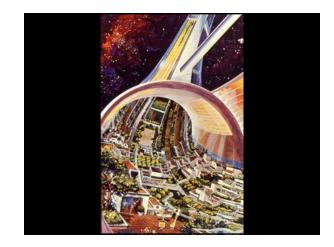
• Omnidirectional beacons cost \$10¹²/year

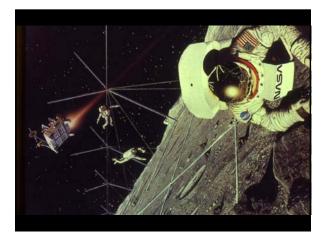
- Significant fraction of Earth's entire energy budget
- We cannot have a significantly larger energy use without frying the Earth
 - The 2nd law of thermodynamics requires that energy use at the very least produces waste heat.

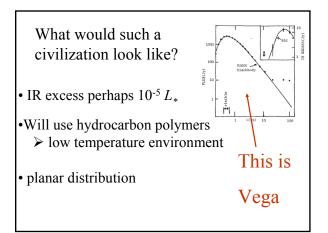
Energy input or Total Wattage Intercepted: Terrestrial or TWIT

1 TWIT \approx 2 x 10¹⁷ watts

Total energy use on Earth $\approx 4 \ge 10^{13} \le 0.2 \text{ milli-twit}$


Ice ages: $-7C \sim 10$ milli-twit


 CO_2 Greenhouse: $3C \sim 4$ milli-twit Major climate change with if energy input into lower atmosphere changes by a few 10's of milli-twit.


We are and will remain a milli-twit civilization unless we abandon planets

They could afford to send interstellar beacons.

But since kinetic energy of a space colony moving at 0,01c is a few twit-days

They could also afford slow interstellar travel with a few centuries transit time

This probably doesn't sound very inviting to most of you.

Does it bother you that we've gone 60,000 miles since I've been talking to you?

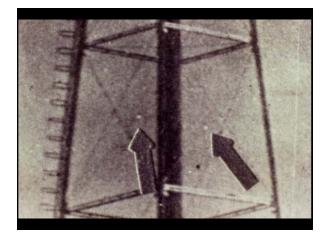
Such travel would be colonizing

- few centuries transit
- few centuries to grow the population from 10⁴ to trillion at 6%/yr
- send out colonies to the next star in perhaps a 1000 years

It only takes a few 10's of millions of years to colonize every suitable site in the Galaxy

This is less 1% the age of the Galaxy or about a day on the cosmic calender.

Where is the closest colonization site?


Here! Where are they?

