NUMERICAL ANALYSIS OF SIMPLIFIED RELIC-BIREFRINGENT GRAVITATIONAL WAVES

> Rafael de la Torre Dr. David Garrison

> > 3/29/10

In The Beginning ...

Standard model of the universe (Big Bang) Originally discovered by Edwin Hubble's observations of distant galaxies Red-shifted in all directions = accelerating away Decades of supporting evidence Confirmation of Hubble's observations from various sources **Cosmic Microwave Background (CMB)** observations

Standard Model

Big "Problems"

Horizon and Smoothness Problems: The Universe exhibits large-scale homogeneity that shouldn't exist

 Flatness Problem:
The Universe shouldn't be ~flat today

Inflation Theory

Solves problems with standard model

- Proposed by MIT Physicist Alan Guth in 1980
- Extremely rapid expansion of the universe in a very short time span (~10⁻³⁵ to ~10⁻³² s)

Horizon and Smoothness Problems

Flatness Problem

Gravitational Waves

Prediction of Einstein's General Relativity

- Space-Time curved by mass
 - Larger mass corresponds to greater curvature
- Einstein's equations can be written as wave equations using adequate assumptions
- Very large mass-energy objects in motion can produce "ripples" in space-time
 - Ripples = Gravity Waves (GWs)
 - Possible Sources Include:
 - Black holes, massive/dense stars
 - Very early universe

Relic GWs are remnants of the exponential inflation of the very early universe

Gravitational Spectrum

7

Relic GWs

Possibly associated with cosmological structure formation

- Leptogenesis
- GRMHD turbulence
- Recent work by Alexander, et al. adds potential Quantum Gravitation effects
 - Inclusion of QG terms predicts very small anisotropies in space-time during early universe
 - Anisotropies produce *Birefringent* (BRF) GWs with different polarities

Detection

- Relic GW theory suggests a CMB analog may exist for gravitational radiation
 - Cosmic Gravitational Wave Background (CGWB)
- Detecting relic-BRF GWs would provide evidence of inflation and QG effects
- GW spectrum is needed to focus detectors on certain amplitude vs. frequency regions

Relic GW Spectrum

Relic GWs result in tensor perturbations to the ST metric

$$ds^{2} = -(1+2\varphi)dt^{2} + \omega_{i}dx^{i}dt + a(t)\left[((1+2\psi)\delta_{ij} + h_{ij})dx^{i}dx^{j}\right]$$

$$\mathrm{d}s^2 = a^2(\eta)[\mathrm{d}\eta^2 - (\delta_{ij} + h_{ij})\mathrm{d}x^i\mathrm{d}x^j]$$

- Spectrum determined using QM approach
 - Tensor perturbations become operators in Quantum-Gravitational expectation function

Mean-square amplitude of spectrum —

$$\langle 0 | h_{ij}(\eta, x) h^{ij}(\eta, x) | 0 \rangle = \left[\frac{C}{\pi} \right]^2 \frac{1}{2} \int_0^\infty k^2 \sum_{p=L,R} \left| h_k^p(\eta) \right|^2 \frac{dk}{k}$$
$$h^2(k, \eta) = \left[\frac{4l_{PL}}{\sqrt{\pi}} k \right]^2 \frac{1}{2} \sum_{p=L,R} \left| h_k^p(\eta) \right|^2 \checkmark$$

Mode Function is primary variable to determine!

 Computation of spectrum is only required at some conformal time (η) during inflation

Mode Functions

> Composed of GW equation and "effective" scale factor $g_{n}(\eta)$

$$h_p(\eta) = \frac{g_p(\eta)}{z_p(\eta)}$$

 Scale factor and effective scale factor have the following form during inflation

$$a(\eta) = l_o |\eta|^{1+\beta} \quad \text{for} \quad -\infty \le \eta \le \eta_{iz}; -2 \le \beta \le -1$$
$$z_p = a(\eta) \sqrt{1 - \lambda_p \theta k \eta}$$

GW equation is key to determine mode function!
Given by equation for 1-D Harmonic oscillator

$$\frac{d^2}{d\eta^2}g_p + \left(k^2 - Veff_p\right)g_p = 0$$

Standard and Simplified BRF Relic GWs

		Standard GW	<u>Simplified BRF GW</u> - $k\theta\eta << 1$
Ve	eff	$\frac{a''(\eta)}{a(\eta)} = \frac{\beta(1+\beta)}{\eta^2}$	$\frac{z''(\eta)_p}{z(\eta)_p} = \frac{\beta(1+\beta)}{\eta^2} + \lambda_p \frac{2(1+\beta)}{\eta} \frac{k\theta}{(1-\lambda_p 2k\theta)} + \frac{(k\theta)^2}{(1-\lambda_p 2k\theta)^2}$
			Simplified $\frac{z''(\eta)_p}{z(\eta)_p} = \frac{\beta(1+\beta)}{\eta^2} + \lambda_p \frac{2(1+\beta)k\theta}{\eta} + (k\theta)^2$
General		$g(\eta) = C_1 \sqrt{k\eta} e^{-ik\eta} J_{\left(\beta+\frac{1}{2}\right)}(k\eta) + C_2 \sqrt{k\eta} e^{+ik\eta} Y_{\left(\beta+\frac{1}{2}\right)}(k\eta)$	$g_{p}(\eta) = C_{1}M_{\kappa_{p},\mu}\left(\beta + 1 - \kappa_{p}, 2\beta + 2, 2ik\eta\sqrt{1 - \theta^{2}}\right)$
Solution			$+ C_2 W_{\kappa_p,\mu} \left(\beta + 1 - \kappa_p, 2\beta + 2, 2ik\eta \sqrt{1 - \theta^2}\right)$
Behavior		For $k^2 \ll Veff g(\eta) \to Ca(\eta)$, For $k^2 \gg Veff g(\eta) \to Ce^{-ik\eta}$	
	Where, $b = 2^{2+\beta} \left \mathbf{l} + \beta \right ^{-(1+\beta)}$; Where, $\kappa_p = \lambda_p \left (1+\beta) \theta \right/ \sqrt{\theta^2 - 1} \right $		

Red-shift of RMS Amplitude

- Spectral amplitude at inflation is red-shifted for sub-Hubble radius wave lengths to any time since
 - Method developed by Grischuk for standard GW spectrum
- Red-shift is function of scale factors at different "breakpoints"
 - Breakpoints correspond to transition between different eras
 - Red-shift during each era determined by general relation

$$1 + z = \frac{v_e}{v_o} = \frac{k_e}{k_o} = \frac{a_{now}(\eta)}{a_{then}(\eta)}$$

Variable Properties

Frequency & wave number - $1e-20 \le v \le 1e+10$

- Low-frequency limit corresponds to wave lengths > current Hubble radius
- High-frequency limit established from relationship

$$b\frac{l_{Pl}}{l_o}\left(\frac{\nu}{\nu_H}\right)^{2+\beta} < 1$$

- > Power-law expansion parameter β = -2 and -1.9
 - Theoretical restriction 1+ β < 0
 - Values chosen encompass expected range
 - -2 Corresponds to de Sitter Universe (No Matter, + Λ)
 - -1.9 incorporates slow-roll approximation (falls within this range)
- > BRF Parameter $\theta \leq 1e-05$
 - Composed of QG and string theory parameters
 - Values > than this result in non-linear Veff
- > Conformal Time $|\eta| < 1e-18$
 - Due to numerical instabilities in high frequency regime
 - Results from constraint k $\eta \theta \ll 1$

Numerical approach

> Used Numerical routines available in MATLAB

- Applied built-in Bessel & Gamma functions
- Imported and modified special complex Kummer & Gamma function modules from user community
- Evolved particular solutions of GW equations using variable constraints
 - Calculated mode function and spectrum at initial conformal time for each step through GW equations
 - Red-shifted initial spectrum using Grishchuk's method depending on values of $\boldsymbol{\nu}$
 - Plotted resulting spectrum and differences between models
- Validity check
 - BRF GW algorithms numerically computed with theta = 0 to compare against standard values
 - Compared results to theoretical approximations where possible

Relic GW Spectrum RMS Amplitude vs Frequency

Gravity Wave Spectrum - All Models - β = -2 & -1.9 Simplified BRF GW 0 Std -2 SBRF-2 DGW-2 Spectrum for $\beta = -2$ -5 Std -1.9 - SBRF -1.9 og h(v,ŋ-H) (RMS- Amplitude) DGW -1.9 Space Ground Pulsar -10 Based Based Timing Spectrum for $\beta = -1.9$ LISA LIGO I -15 LIGO II -20 Δ Standard vs BRF for β = -1.9 -25 -30 Δ Standard vs BRF for β = -2 Planck scale -35 -20 -15 -10 -5 5 n 10 $\log v$ (Frequency)

Conclusions

- GW spectrum for <u>simplified</u> BRF GWs does not appear to be significantly different than the standard GW spectrum at the present time
 - Indicates that BRF GW ~ Standard GW for $k[\eta|\theta << 1$ during instant of GW creation
 - If BFR GW were created, they may not be distinguishable unless θ and $k|\eta|\theta$ are different than assumptions

Review of general BRF analytical solutions imply limit on conformal time of GW creation (at least for RH wave)
k|η|θ < ½ so |η| < 5e-15

Forward Work

- Apply red-shift for accelerating Universe as proposed by Zhang, et al. for completeness
- Examine numerical solution to general BRF GW ODE
- > Variable θ
 - Examine non-linear behavior and implications for θ > 1e-05
- Determine Spectrum at 3 minutes to support GRMHD work
 - Target red-shift for this period
 - θ may have more implications here
- > Numerical algorithms
 - Code and Transport to other platforms
 - C++/Cactus for ongoing GRMHD work
 - Investigate alternatives if necessary

Final Thoughts

- Between 1946 1964, various papers predicting CMB were written.
 - Background temperature estimated from below 20 K & 45 K
 - One paper predicted it was detectable
- In 1964 Arno Penzias and Robert Wilson measure unexpected radio noise while testing a microwave receiver
 - Published paper on noise
 - Later identified by Robert Dicke as CMB
 - Helped refine Big Bang model (3 K)
- NASA began development of the COBE satellite in 1976 and launched it in 1989

When and where will the Bell Labs moment happen for the CGWB?

Contained in Published Paper

Numerical analysis of simplified relic-birefringent gravitational waves David Garrison and Rafael de la Torre 2007 *Class. Quantum Grav.* **24** 5889

