

Numerical Analysis of the Biermann Battery Mechanism of Magnetogenesis for Relativistic MHD Turbulence

David Garrison Professor of Physics, UHCL

The Beginning

Where the Heck did all that come from?

First Observatories

New Technologies

Putting it all together

Not Everyone Understands the Theory

University of Houston

University of Houston History of the Universe

Time Since

We have some idea, but don't know for sure how the universe is going to end yet.

Big Bang	Since Big) Bang	universe is going to end yet.
present Era of	stars, galaxies and clusters	Humans observe the cosmos.	
Galaxies	(made of atoms and plasma)		The observable
years	atoms and plasma	First galaxies form.	universe
Atoms 500,000	(stars begin to form)	Atoms form; photons fly free and become	
years	plasma of hydrogen and	microwave background.	
3 minutes	plus electrons	Fusion ceases; normal matter is 75% hydrogen.	We know what's going on base on
Era of Nucleosynthesis	electrons, neutrinos (antimatter rare)	25% helium, by mass.	our knowledge of
0.001 seconds Particle Era	elementary particles (antimatter	Matter annihilates antimatter.	elementary
10 ⁻¹⁰ seconds Electroweak Era	elementary force	ctromagnetic and weak ces become distinct.	particle physics
10 ⁻³⁸ seconds GUT Era	elementary cau	tinct, perhaps using inflation of	We still don't know
10 ⁻⁴³ seconds Planck Era	particles uni ????	verse.	how physics works in
neutron electron antiprote proton water neutrino	on — antielectrons 🚑 quar	ks	

Major Events

University of Houston Clear Lake

Background

- Primordial Magnetic Fields (PMFs) are believed to have played a role in the dynamics of the evolution of the universe
- PMFs may have seeded large-scale magnetic fields on the Mpc scale
- PMFs can't be directly observed so nobody knows how large they were or when they formed
- After Magnetogenesis, they could have been amplified by dynamo and compression

University of Houston Clear Lake Homogeneous MHD Turbulence

- Examine flow in a small 3-D cube (3-torus).
- Assume periodicity.
- *Homogeneous* means same statistics at different positions.
- Approximation that focuses on physics of turbulence.
- Periodic cube is a surrogate for a compact magneto-fluid.

GRMHD

- Essentially Navier-Stokes equations on curved space-time
- Dynamics depends on the curvature of space-time denoted with the 4-metric (g_{µν}), 3-metric (γ) and lapse (α)
- Fluid properties replaced by the stressenergy tensor (T^{μν})
- 4D components such as 4-velocity (u^v) are used

GRMHD Variables

- $\rho_* = \alpha \sqrt{\gamma} \rho_0 u^0$: Conserved Mass Density
- $S_i = \alpha \sqrt{\gamma} T_i^0$: Momentum Density
- $\tau = \alpha^2 \sqrt{\gamma} T^{00} \rho_*$: Energy Density
- $\tilde{B}^{j} = \sqrt{\gamma}B^{j}$: Magnetic Field

•
$$v^i = \frac{1}{u^0} \gamma^{ij} u_j - \beta^i$$
: 3-velocity

•
$$u^0 = \frac{1}{\alpha} \sqrt{1 + \gamma^{ij} u_i u_j}$$

• $P = (\Gamma - 1)\rho_0 \varepsilon$: Pressure

GRMHD Equations

1.
$$\partial_t \rho_* + \partial_j (\rho_* v^j) = 0$$

2. $\partial_t \tilde{\tau} + \partial_i (\alpha^2 \sqrt{\gamma} T^{0i} - \rho_* v^i) = s$
3. $\partial_t \tilde{S}_i + \partial_j (\alpha \sqrt{\gamma} T_i^j) = \frac{1}{2} \alpha \sqrt{\gamma} T^{\alpha \beta} g_{\alpha \beta, i}$
4. $\partial_t \tilde{B}^i + \partial_j (v^j \tilde{B}^i - v^i \tilde{B}^j) = 0$
Where: $s = -\alpha \sqrt{\gamma} T^{\mu \nu} \nabla_{\nu} n_{\mu}$

Vacuum Bubble Collisions

University of Houston Clear Lake PMFs from Phase Transistions

- EW and QCD Phase Transitions studied
- Phase Transitions cause stirring with velocities comparable to the speed of sound in the fluid
- This results in a short-term intense turbulent GRMHD fluid
- Biermann Battery effects describe how a turbulent magnetofluid can generate magnetic fields from no initial magnetic field

Biermann Battery

- MHD equations require an initial B-field
- The Biermann Battery works because of differences between temperature and density gradients
- The modified B-field MHD equation becomes

$$\begin{split} \partial_t \tilde{B}^i &= -\partial_j \left(v^j \tilde{B}^i - v^i \tilde{B}^j \right) + \\ \frac{1}{q n_e \gamma} \nabla T_e \times \nabla n_e + \frac{T_e}{q n_e \gamma^2} \nabla n_e \times \nabla \gamma \end{split}$$

Experiment

- Code developed in Cactus utilizing GRMHD equations
- All runs utilized 128³ internal grid points on the UH UHPC Cluster
- Fourier Spectral Methods and ICN utilized
- Simulation domain ~1 Mpc adjusted for scale factor
- Initial temperature & density fluctuations $\sim k$
- Initial velocity fluctuations $\sim k^3$

Initial Conditions (EW)

- Energy = 246 GeV
- Temperature = $2.85 \times 10^{15} \text{ K}$
- Thermal Degrees of Freedom = 106.75
- Scale Factor = 9.58×10^{-16}
- Initial Time = $2.09 \times 10^{-11} s$
- Mass Density = $2.90 \times 10^{31} \text{ kg/m}^3$
- Maximum Velocity = 0.55 c

Initial Conditions (QCD)

- Energy = 170 MeV
- Temperature = $1.97 \times 10^{12} \text{ K}$
- Thermal Degrees of Freedom = 61.75
- Scale Factor = 1.38×10^{-12}
- Initial Time = $4.36 \times 10^{-5} s$
- Mass Density = $3.80 \times 10^{18} \text{ kg/m}^3$
- Maximum Velocity = 0.55 c

University of Houston Clear Lake

EW Velocity

University of Houston Clear Lake

QCD Velocity

EW Phase Transition

University

QCD Phase Transition

Conclusion

of Houston Clear Lake

- B-fields as large as 10⁻¹⁸ G may have been produced by the end of the EW phase transition
- These fields varied from 10⁻²⁸ G to and average of 10⁻²⁴ G over 1 Mpc
- The strongest B-fields may have been isolated to small areas
- More work is needed to understand how these fields may have evolved until the first stars and galaxies formed

Questions???