Atmospheric Chemistry on Substellar Objects

Channon Visscher Lunar and Planetary Institute, USRA UHCL Spring Seminar Series 2010

Image Credit: NASA/JPL-Caltech/R. Hurt

Outline

- introduction to substellar objects; recent discoveries
 - what can exoplanets tell us about the formation and evolution of planetary systems?

- clouds and chemistry in substellar atmospheres
 - role of thermochemistry and disequilibrium processes
 - Jupiter's bulk water inventory
 - chemical regimes on brown dwarfs and exoplanets
- understanding the underlying physics and chemistry in substellar atmospheres is essential for guiding, interpreting, and explaining astronomical observations of these objects

Methods of inquiry

- telescopic observations (Hubble, Spitzer, Kepler, etc)
- spacecraft exploration (Voyager, Galileo, Cassini, etc)
- assume same physical principles apply throughout universe
 - allows the use of *models* to interpret observations

A simple model; Ike vs. the Great Red Spot

Field of study

• stars:

- sustained H fusion
- spectral classes OBAFGKM
- > 75 $M_{Jup} (0.07 M_{Sun})$

substellar objects:

- brown dwarfs (~750)
 - temporary D fusion
 - spectral classes L and T
 - 13 to 75 M_{Jup}
- planets (~450)
 - no fusion
 - < 13 M_{Jup}

Field of study

- Sun (5800 K), M (3200-2300 K), L (2500-1400 K), T (1400-700 K), Jupiter (124 K)
- upper atmospheres of substellar objects are cool enough for interesting chemistry!

Dr. Robert Hurt, Infrared Processing and Analysis Center

Worlds without end...

- prehistory: (Earth), Venus, Mars, Jupiter, Saturn
- 1400 BC: Mercury
- 1781: Uranus
- 1801: Ceres
- 1846: Neptune
- 1930: Pluto first and largest Kuiper Belt object
- 1992: PSR 1257+12 b first extrasolar planet (orbiting a pulsar)
- 1995: 51 Pegasi b first extrasolar planet around solar-type star
- 1995: Gliese 229b first 'bona fide' (methane) brown dwarf
- 1997: first confirmed multi-planet systems
- 1999: HD209458b first transiting extrasolar planet
- 2000: 50 known exoplanets
- 2003: Eris largest dwarf planet in Solar System
- 2004: 2MI 207b first exoplanet around brown dwarf, first imaged (IR)
- 2005: 180 known exoplanets
- 2007: Gliese 581d 7x Earth mass planet in habitable zone
- 2008: Fomalhaut b first exoplanet directly imaged at visible wavelengths
- 2010: 445 confirmed exoplanets (as of this morning), 750 brown dwarfs

Source: Google; Extrasolar Planets Encyclopaedia

Worlds without end...

• there remains a strong observational bias toward large, close-in planets

Mass and orbit of exoplanets, normalized to Earth

Worlds without end...

- current objective Earth-mass planets or large satellites in habitiable zone
 - habitable zone: temperatures allow existence of liquid water

relative location of habitable zone; Kepler spacecraft

- radial velocity method (80% of exoplanets)
 - planet's gravity causes wobble in star's rotation
 - measurement bias:
 - 2/3 of extrasolar planets are I Jupiter mass or greater
 - 2/3 of extrasolar planets are within I AU of their star

Star & planet orbit a common center of gravity; radial velocity for 51 Pegasi

- direct imaging (~12 planets) infrared
 - 2MI207b: brown dwarf 3-10 M_{Jup} companion at 40 AU
 - HR8799: young main sequence star with three planets

- direct imaging (~12 planets) visible!
 - Fomalhaut b: ~3 M_{Jup} planet orbiting A3V star at 115 AU, at inner edge of debris disk

Fomalhaut b discovery; Kalas et al 2005

- planetary transits (16% of exoplanets)
 - planet cross the disk of the star, from our perspective
 - allows determination of radius and (sometimes) planetary spectra

Optical phase variation for CoRoT-1b, Snellen et al 2009

- planetary transits (16% of exoplanets)
 - planet cross the disk of the star, from our perspective
 - allows determination of radius and (sometimes) planetary spectra
 - HD209458b: 0.7 M_{Jup} planet orbiting G star at 0.05 AU

Planetary formation & migration

- close-in exoplanets suggest planetary migration
 - too close and too hot for "normal" planet formation
 - Corot-7b: 5 M_{Earth} 0.017 AU orbit around main sequence G star
 - high density suggests atmosphere was stripped away
 - evidence for atmospheric loss from HD209458b

Corot-7b; Gomes et al. "Nice model"; evaporation from HD209458b

Planetary formation & migration

- reanalysis of migration in the Solar System
 - migration of Jupiter, Saturn, Uranus, Neptune
 - responsible for late-heavy bombardment in ~4 billion years ago?

Gomes et al. "Nice model"

Planetary formation

- reanalysis of planetary formation theories
- planetary formation
 - core accretion (slowest)
 - disk instability
 - cloud collpase (?)
- both core accretion & disk instability have been suggested for Jupiter

hubblesite.org

Planetary formation

- 2M J044144 system
 - $-7 M_{Jup}$ companion orbiting at 24 AU
 - too young (I Ma) for core accretion
 - not enough material for disk instability
 - suggests cloud collapse (like a star)

hubblesite.org;Todorov et al 2010

Extrasolar planet properties

- radius and mass suggest most are gas giants with 'solar' composition (H, He)
- orbital properties suggest variety of formation histories
- what's controlling what we see on the planets themselves?
 - clouds & chemistry operating in different environments
 - may expect similar physical & chemical processes as on Jupiter

artists' conceptions of 55 Pegasi b

Introduction to Jupiter

- 86% H₂, 14% He and 0.3% heavy elements
- outer molecular envelope, H metal "mantle", ice/rock core
- emits 2x radiation as it receives from Sun: warm convective interior

major element chemistry on Jupiter; interior model of Jupiter;

Gas chemistry

• Chemistry 101: major gases predicted by thermodynamic equilibrium for a given P,T, X (1:1 abundance lines shown)

- CO on L dwarfs
- CO/CH₄ on T dwarfs (Gl229b)
- CH₄ on Jupiter, Saturn
- this is observed

equilibrium gas chemistry in substellar objects, cf.Visscher et al. 2006

Cloud chemistry

- clouds strongly affect what we can observe:
 - remove atoms and molecules from the gas phase
 - introduce particulate matter (reflection & scattering)

from Tinney (2000)

Cloud chemistry

- numerous deep cloud layers are predicted by equilibrium
- strong effect on spectral observations
 - note: Na₂S cloud disappears in warmer objects
 - note: CH₄ dominant at high altitudes in cooler objects

A cloudy picture. Cloud layers for Jupiter, T dwarfs, L dwarfs, and objects near the transition from L to M dwarfs. The layers are progressively stripped off as the temperature of the object increases. *Lodders (2004)*

Spectral observations and chemistry

- basic thermochemistry is confirmed by spectral observations
 - disappearance of Na in later (cooler) types removed by cloud
 - appearance of CH_4 in later (cooler) types change in gas chemistry

Kirkpatrick (2000)

Predicting chemistry in substellar objects

- thermochemical equilibrium is useful first approximation, but...
- substellar atmospheres are not in complete equilibrium:
 - atmospheric mixing (convection)
 - photochemistry (UV-driven reactions)
 - these effects must be included in chemical models
- new approach: numerical model which simultaneously considers thermochemistry, photochemistry, and mixing
 - based upon JPL/Caltech KINETICS code (Allen et al. 1981)
 - includes >100 species and >900 forward/reverse reaction pairs
 - in principle, can be applied to any object

Application I: Jupiter's water abundance

- what is Jupiter's atmospheric water abundance? why do we care?
 - water vapor is expected to be relatively abundant (>1000 ppm)
 - plays large role in Jupiter's weather and transfer of energy
 - formation models: how were heavy elements delivered to Jupiter?

Heavy element enrichments in Jupiter's atmosphere, relative to solar M/H_2

Jupiter's water abundance: difficulties

- H_2O difficult to measure by because of cloud formation
- solution: *Galileo* probe (December 7, 1995)
 - survived to 420 K, 20 bar level
 - measured a low H_2O abundance (400 ppm), that increased with depth!?

getting at the deep water abundance; the Galileo entry probe

Why the low water abundance?

- probe entered a hotspot
 - localized regions of downwelling material
 - unusually dry with relatively thin clouds

Infrared image showing hotspots; clouds near hotspot region – white square has area of Texas

Using a chemical model

- study how H_2O affects chemistry of things which we *can* observe on Jupiter
- carbon monoxide (CO) is tied to H₂O abundance

 $CH_4 + H_2O = CO + 3H_2$

 we expect negligible CO in upper atmosphere, but observe I ppb CO observed on Jupiter: need to consider atmospheric mixing

CO abundance depends upon:

- rate of mixing
- rate of chemical reactions
- water abundance

after Lodders (2004); CO equilibrium chemistry on Jupiter

Jupiter's water abundance: results

- our results suggest a water enrichment of 2-3x solar, consistent with other heavy elements
- rules out formation mechanisms which require large (>8x) amounts of water

Visscher et al. 2010 (in press); CO observation from Bezard et al. 2002

Some familiar clouds: Jovian thunderstorms

- evidence for moist, convective thunderstorms on Jupiter
 - towering, cumulonimbus-type cloud structures
 - upper level divergence consistent with cloud updraft
- our results are roughly in agreement with estimated cloud base temperatures

Storm region and interpretation from Gierasch et al (2000); a terrestrial analog?

Application 2: substellar photochemistry

- close-in exoplanets experience intense stellar irradiation
 - atmosphere evaporation (HD20948b, Corot-7b?)
 - large day/night differences
 - dramatic effect on weather
- what are relative roles of thermochemistry vs. photochemistry?

artist's concept of evaporating atmosphere around HD209458b; temperature differences from Iro et al (2005)

CO chemistry: Gliese 229b

• two regimes evident: thermochemistry and quench chemistry

CO chemistry on Gliese 229B with observed abundance (cf. Saumon et al. 2000)

CO chemistry: Gliese 229b

• two regimes evident: thermochemistry and quench chemistry

CO chemistry on Gliese 229B with observed abundance (cf. Saumon et al. 2000)

C₂H₆ chemistry: Gliese 229b

• three regimes: thermochemistry, quench chemistry, photochemistry

 C_2H_6 chemistry on Gliese 229B

C₂H₆ chemistry: Gliese 229b

• three regimes: thermochemistry, quench chemistry, photochemistry

Ethane (C_2H_6) Mole Fraction

 C_2H_6 chemistry on Gliese 229B

Exoplanet chemistry

- close-in exoplanets dominated by photochemical regime
 - UV flux 10,000x for HD209458b than for Jupiter
- very few photochemical models exist
 - Liang et al. 2003, 2004: simple hydrocarbons
 - Zahnle et al. 2010: sulfur chemistry
- how deep is thermochemical/photochemical crossover?

Figure 8, Visscher et al. 2006. HD209458b, solid lines: equilibrium, dotted lines: Liang et al 2003

Exoplanet chemistry: GJ436b

- GJ436b: transiting "hot Neptune": 22 M_{Earth}, 0.03 AU orbit around M dwarf
 - blue dashed line: equilibrium (reflects the unusual P-T profile)
 - green line: photochemistry turned off
 - blue line: photochemistry turned on very large flux

Preliminary model results for GJ436b

Outlook

- observed chemical behavior of any given substellar object depends upon atmospheric structure, atmospheric dynamics, and available UV flux
- cloud formation and disequilibrium effects have a strong influence on the spectral appearance of substellar objects
- exoplanet discoveries are driving planetary research:
 - how do planets evolve over time?
 - how do planetary systems form and evolve?
 - what atmospheric processes influence what we observe?
- current and future work: characterization of exoplanet atmospheres

Thank you

CO quenching chemistry

- atmospheric transport drives CO out of equilibrium
 - quenching: rate of mixing is faster than chemical reaction rates

CO chemistry in Jupiter's atmosphere at 1000 ppm water

CO quenching chemistry

- atmospheric transport drives CO out of equilibrium
 - quenching: rate of mixing is faster than chemical reaction rates

CO chemistry in Jupiter's atmosphere at 1000 ppm water

Jupiter's Water Abundance: Results

- our results suggest a water enrichment consistent with other heavy elements (relative to solar)
- rules out formation mechanisms which require large amounts of water (e.g. clathrate hydrates)

heavy element enrichments on Jupiter; Visscher et al 2010 (in press)

Jupiter's Water Abundance

- core accretion model: rock or rock/ice core initially forms
- continued accretion until it is massive enough to capture nebular gas (mostly H)
- how are heavy elements delivered? ice? clathrate hydrates? carbon-rich matter?

Planetary formation in a protoplanetary disk