Plasmas

The "Fourth State" of the Matter

- The matter in "ordinary" conditions presents itself in three fundamental states of aggregation: solid, liquid and gas.
- These different states are characterized by different levels of **bonding** among the molecules.
- In general, by increasing the temperature (=average molecular kinetic energy) a phase transition occurs, from solid, to liquid, to gas.
- A further increase of **temperature** increases the **collisional rate** and then the degree of ionization of the gas.

The "Fourth State" of the Matter (II)

- The ionized gas could then become a plasma if the proper conditions for density, temperature and characteristic length are met (quasineutrality, collective behavior).
- The plasma state **does not exhibit a different state of aggregation** but it is characterized by a different behavior when subjected to electromagnetic fields.

The "Fourth State" of the Matter (III)

Solid	Liquid	Gas	Plasma
Example Ice H ₂ D	Example Water H ₂ 0	Exemple Steam H ₂ 0	Econcio Ionized Gas H ₂ > H ⁺ + H ⁺ + + 2e ⁺
Cold T<0°C	Warm 0 <t<10d°c< th=""><th>Hot T>100°C</th><th>Hotter T>100,000°C I>10 electron VoltsI</th></t<10d°c<>	Hot T>100°C	Hotter T>100,000°C I>10 electron VoltsI
	000000		0000 0000
Molecules Fixed in Lattice	Molecules Free to Move	Molecules Free to Move, Large Spacing	lons and Electrons Move Independently, Large Spacing

Debye Shielding

• An ionized gas has a certain amount of free charges that can move in presence of electric forces

Debye Shielding (II)

E

+

÷

+

÷

•

÷

.

• Shielding effect: the free charges move towards a perturbing charge to produce, at a large enough distance λ_D , (almost) a neutralization of the electric field.

Debye Shielding (IV)

• The quantity

$$\lambda_{De} = \sqrt{\frac{\varepsilon_0 k_B T}{n q_e^2}}$$

is called the (electron) Debye length of the plasma

• The Debye length is a measure of the effective shielding length beyond which the electron motions are shielding charge density fluctuations in the plasma

Debye Shielding (IV)

• Typical values of the Debye Length under different conditions:

	n [m ⁻³]	T[eV]	Debye Length [m]
Interstellar	10 ⁶	10 -1	1
Solar Wind	107	10	10
Solar Corona	10 ¹²	10 ²	10 -1
Solar atmosphere	10 ²⁰	1	10 ⁻⁶
Magnetosphere	10 ⁷	10 ³	10 ²
lonosphere	10 ¹²	10 -1	10 -3

From Ionized Gas to Plasma

- An ionized gas is characterized, in general, by a mixture of neutrals, (positive) ions and electrons.
- For a gas in thermal equilibrium the Saha equation gives the expected amount of ionization:

$$n_i^2 \cong 2.4 \cdot 10^{21} n_n T^{3/2} e^{-U_i/k_B T}$$

• The Saha equation describes an equilibrium situation between ionization and (ion-electron) recombination rates.

From Ionized Gas to Plasma (II)

 (Long range) Coulomb force between two charged particles q₁ and q₂ at distance r:

 \mathbf{q}_2

+

 \mathbf{q}_1

r

+

From Ionized Gas to Plasma (III)

• (Short range) force between two neutral atoms (*e.g.* from Lenard-Jones interatomic potential model)

$$\mathbf{U} = 4\varepsilon \left[\left(\frac{\sigma}{\mathbf{r}} \right)^{12} - \left(\frac{\sigma}{\mathbf{r}} \right)^{6} \right]$$

 $\mathbf{F} = -\nabla \mathbf{U}$

$$\mathbf{F} = 4\varepsilon \left[12 \left(\frac{\sigma}{r} \right)^{12} - 6 \left(\frac{\sigma}{r} \right)^{6} \right] \frac{\hat{\mathbf{r}}}{r^{2}}$$

repulsive attractive

From Ionized Gas to Plasma

• If *L* is the typical dimension of the ionized gas, a condition for an ionized gas to be "quasineutral" is:

$$\lambda_D << L$$

• The "collective effects" are dominant in an ionized gas if the number of particles in a volume of characteristic length equal to the Debye length (Debye sphere) is large:

$$N_D = n \frac{4}{3} \pi \lambda_D^3 >> 1$$

• N_D is called "plasma parameter"

From Ionized Gas to Plasma (II)

• A plasma is an ionized gas that is "quasineutral" and is dominated by "collective effects" is called a plasma:

$$N_D = n \frac{4}{3} \pi \lambda_D^3 >> 1$$

From Ionized Gas to Plasma (III)

- An ionized gas is not necessarily a plasma
- An ionized gas can exhibit a "collective behavior" when the long-range electric forces are sufficient to maintain overall neutrality
- An ionized gas could appear quasineutral if the charge density fluctuations are contained in a limited region of space
- A plasma is an ionized gas that exhibits a collective behavior and is quasineutral

Plasma Confinement: the Lorentz Force

Force on a charged particle in a magnetic field

 $\underline{\mathbf{F}} = \mathbf{q} \ \underline{\mathbf{v}} \ \mathbf{x} \ \underline{\mathbf{B}}$

Plasma Confinement: the Magnetic Mirror

Magnetic Mirror: charged particles (protons and electrons) move in helical orbits at their cyclotron frequency

