A Temporal Study of Multi-episodic Gamma-ray Bursts

Tom L. Patton
UHCL Physics Department
April 2012
Presentation Agenda

• GRBs: a short history
• GRB phenomenology
• Burst physics
• A temporal study
• Conclusions
• References
What are Gamma-Ray Bursts?

• GRBs are transient, emissions of high energy radiation which spectra are modeled as a broken power law

• Energy for these bursts peak range from several hundred eV to several hundred keV (hard x-rays to soft gamma-rays)

• Events are variable spatially, temporally, and morphologically

Approximate Energy range

(Preece et al., ApJS 1999)
(Kaneko et al., ApJS 2006)
A short history…

• The discovery of GRBs
 – Detected by military satellites in 1967
 – Vela satellites used to watch for clandestine nuclear tests by the USSR
 – Classified information, not announced until 1973
A short history...

• The discovery of GRBs
 – Many questions related to GRB discovery
 • Where are these events occurring?
 • What are the event’s progenitors?
 – GRBs turned out to be unpredictable in both space and time
 • How will we investigate these events?
A short history...

• Detection evolution
 – After Vela, scientists started attaching gamma-ray spectrometers to interplanetary probes and satellites
 – Venera Satellites with KONUS instruments were launched in the late 1970s to get more accurate location information
 – Compton GRO with BATSE experiment for all-sky capability has detected the majority of GRBs in the catalog of bursts
A short history...

• Detection evolution
 – Compton GRO with BATSE experiment for all-sky capability has detected the majority of GRBs in the catalog of bursts
 • 1991-2000
 • Higher sensitivity
 • More than 2500 bursts detected
A short history...

• Current experiments
 – First x-ray detection by BeppoSAX in 1997
 – Followed by OT detection
 – Swift satellite
 • Designed specifically for detection and observation of GRBs
 • 3 instruments
 • Launched 2004
 • More than 650 GRBs detected
A short history...

- Current experiments
 - Swift satellite
 - Can maneuver to burst very quickly
 - 2 steradian field of view (~16% of the sky)

Transmission of GRB coordinates to GCN

BAT Detection of GRB (S/N above background) → Satellite slew to FOV of XRT and UVOT → Event observation though low-energy afterglow
Burst Phenomenology

• Observations
 – Most data we have comes from BATSE experiment
 – Some trends we are able to identify
 • Burst duration
 • Burst energies
 • Burst locations
Burst Phenomenology

• Types of Bursts
 – Histogram shows bi-modal distribution of GRBs
 – This allows for a loose classification of short GRBs (<2s) and long GRBs (>2s)

(Kouveliotou et al., ApJ 1993)
Burst Phenomenology

• Energies
 – In addition to the duration, the peak energy of the burst might be associated with duration
 – Short bursts tend to be more energetic
 – Long bursts, less energetic

(Kouveliotou et al., 1996)
2704 BATSE Gamma-Ray Bursts
Burst Phenomenology

- Morphology
 - Not every type of GRB exhibits the same behavior
 - FRED (Fast-Rise Exponential Decay) Bursts

![FRED Example (Trigger 3870)](image)
Burst Phenomenology

• Morphology
 – Other bursts are less well-behaved: Multi-episodic bursts
Burst Phenomenology

• Morphology
 – Multi-episodic emissions can be further classified
 – Precursor emission
 – Prompt emission
 – Successor emission
Burst Phenomenology

• GRB Afterglow
 – Bursts have extended activity following the emission in gamma rays
 – Followed by X-rays, Ultra-violet, optical, and radio emissions
 – Not all broadband spectra are recorded due to observation constraints
Burst Phenomenology

Swift XRT Detection of GRB 081008

Swift UVOT Detection of GRB 070107
Burst Phenomenology

- **GRB Afterglow**
 - X-ray afterglow follows the GRB bulk prompt emission, includes X-ray flaring activity
 - Seems to follow a canonical behavior

Burst Physics

• The Relativistic Fireball
 – GRBs are understood within the framework of a relativistically expanding fireball
 – The short timescale of the GRB emission in conjunction with the electromagnetic travel time across the surface, imply a compact source ~100-1000km....

\[R \geq c \Delta t \]
Burst Physics

• The Relativistic Fireball
 – Bursts release 10^{51-54} erg (just as a comparison, that’s 1000 times more than a supernova)
 – By associating the energy released with the compact source, one can determine the optical depth of the object by using...

$$\tau_{\gamma\gamma} = \frac{\sigma_T F D^2}{R^2 m_e c^2}$$
Burst Physics

• The Relativistic Fireball
 – The optical depth with the initial conditions proves too high for photons to escape
 – Fireball must expand in order for the GRB to be detected
 – Since we know the distance to, and the radius of the source we can solve for Lorentz factor required for the photons to escape

\[R_f \geq 2\Gamma^2 c \Delta t, \quad \Gamma = 10^{2-3} \]
Burst Physics

• Relativistic Shocks
 – This relativistic flow is responsible for the prompt emission and after glow
 – The dissipation of the flow’s kinetic energy through shocking (both internal and external)
Burst Physics

• Relativistic Shocks
 – The GRB light curves we see require both types of relativistic shocks: the Internal-External Shock Model
 – Internal shocks release enough kinetic energy to account for the prompt emission and allow for the burst variability...
 – ...while the external shocks (lower energy) are responsible for the burst afterglow
Jetting

- The relativistic fireball must expand as a sphere or a collimated jet.
- For a jet, less radiation is expected to be seen following the flow’s impact with the medium surrounding the progenitor.
- We see this “break” in the light curve, which allows observers to conclude the expansion takes place as a conical jet.
Burst Physics

• What is the progenitor?
 – GRB progenitors are still largely unknown
 – Collapsars
 – Colliding compact objects (NS-BH, NS-NS, etc.)
A temporal study...

• Motivation
 – Multi-episodic bursts are not well understood in the framework of the internal-external shock model
 – Primarily to gleam understanding of the GRB progenitor
 – The multi-episodic nature of GRBs is an excellent laboratory to analyze the nature of the central engine responsible for the emissions detected
A temporal study...

• Previous studies
 • Work suggested a 1-to-1 correlation between the quiescent time and the after-quiet emission duration
 • Proposed a “hibernating” central engine
 • Late time emission activity resultant to external shocks from relativistic flow generated by progenitor

• Study
 – A survey of multi-episodic events, focusing on data from the Swift satellite’s BAT instrument
 – Gather durations from the burst emissions and quiet time between emissions
 – Examine the durations of emissions and quiet times looking for possible correlations
A temporal study...

• Data set selection
 1. Use of the GRB Coordinate network [GCN]
 • Review of several hundred GCN reports on Swift detected GRBs
 • Also several dozen pre-report GRB notices
 2. Highlight bursts that have multi-episodic morphologies and x-ray afterglow data
 3. Run code to search for statistically significant emission episodes
A temporal study...
A temporal study...

• Emission Detection Code
 – Requires systematic method to detect statistically significant emission episodes
 – Code development using IDL (Interactive Data Language)
 – Use 64ms event data to develop mask-weighted, source photons for emission time history
 – Use 64ms raw burst count data for development of detection time history
A temporal study...

Enter GRB data for MWLC

Code builds MWLC

Enter GRB data for emission detection & parameters

Bin Size? SNR? Duration?

Code builds background model, calculates SNR

Do the counts exceed provided SNR?

Yes

Code builds light curve using average calculated background

No

Output...
A temporal study...
A temporal study...
A temporal study...
A temporal study...

• Finding appropriate GRBs
A temporal study...

• Analysis
A temporal Study...

- **Quiet time durations**
 - Durations account for an average of 46.5% of the burst total duration
 - Standard deviation of percentages is 19.6%
 - Lowest 16.4% of duration
 - Highest 87.7% of duration

<table>
<thead>
<tr>
<th>GRB</th>
<th>Pre-quiet emission duration (s)</th>
<th>Quiet time</th>
<th>After-quiet emission duration (s)</th>
<th>Quiet time percentage of total duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>060115</td>
<td>77</td>
<td>48</td>
<td>26</td>
<td>31.79</td>
</tr>
<tr>
<td>060526</td>
<td>12</td>
<td>220</td>
<td>63</td>
<td>74.58</td>
</tr>
<tr>
<td>060929</td>
<td>12</td>
<td>485</td>
<td>56</td>
<td>87.70</td>
</tr>
<tr>
<td>070107</td>
<td>63</td>
<td>253</td>
<td>11</td>
<td>77.37</td>
</tr>
<tr>
<td>070704</td>
<td>74</td>
<td>248</td>
<td>95</td>
<td>59.47</td>
</tr>
<tr>
<td>070721B</td>
<td>37</td>
<td>194</td>
<td>103</td>
<td>58.08</td>
</tr>
<tr>
<td>071003</td>
<td>30</td>
<td>90</td>
<td>33</td>
<td>58.82</td>
</tr>
<tr>
<td>080205</td>
<td>18</td>
<td>47</td>
<td>45</td>
<td>42.73</td>
</tr>
<tr>
<td>080413A</td>
<td>19</td>
<td>20</td>
<td>6</td>
<td>44.44</td>
</tr>
<tr>
<td>080603B</td>
<td>13</td>
<td>25</td>
<td>22</td>
<td>41.67</td>
</tr>
<tr>
<td>081008</td>
<td>72</td>
<td>38</td>
<td>7</td>
<td>32.48</td>
</tr>
<tr>
<td>081126</td>
<td>25</td>
<td>20</td>
<td>16</td>
<td>32.79</td>
</tr>
<tr>
<td>081210</td>
<td>29</td>
<td>112</td>
<td>12</td>
<td>73.20</td>
</tr>
<tr>
<td>090715B</td>
<td>80</td>
<td>135</td>
<td>40</td>
<td>52.94</td>
</tr>
<tr>
<td>090904A</td>
<td>114</td>
<td>48</td>
<td>53</td>
<td>22.33</td>
</tr>
<tr>
<td>090929B</td>
<td>48</td>
<td>90</td>
<td>118</td>
<td>35.16</td>
</tr>
<tr>
<td>100212A</td>
<td>58</td>
<td>60</td>
<td>55</td>
<td>34.68</td>
</tr>
<tr>
<td>100619A</td>
<td>9</td>
<td>57</td>
<td>24</td>
<td>63.33</td>
</tr>
<tr>
<td>100704A</td>
<td>60</td>
<td>52</td>
<td>100</td>
<td>24.53</td>
</tr>
<tr>
<td>110102A</td>
<td>87</td>
<td>45</td>
<td>142</td>
<td>16.42</td>
</tr>
<tr>
<td>111103B</td>
<td>41</td>
<td>59</td>
<td>135</td>
<td>25.11</td>
</tr>
<tr>
<td>111228A</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>33.33</td>
</tr>
</tbody>
</table>
A temporal study...
A temporal study...

After-quiet Emission Duration Histogram

of durations

duration (s)
A temporal study...

Quiet Time Duration Histogram

of durations

duration (s)
A temporal study...

Spearman $\rho = 0.05$, prob. $= 0.83$, Poor correlation
A temporal study...

Spearman $\rho = 0.37$, prob. = 0.09, Weak correlation
A temporal study...

Spearman $\rho = 0.23$, prob. = 0.30, poor correlation
A temporal study...

Precursor Emissions in Red

Spearman $\rho = 0.63$, prob. = 0.37

Tom L. Patton - 120410
A temporal study...

Spearman $\rho = 0.14$, prob. = 0.62

Successor Emissions in Red

After-quiet Emission Duration (s)

Quiet Time Duration (s)

Spearman $\rho = 0.14$, prob. = 0.62
A temporal study...

Spearman $\rho = -0.32$, prob. = 0.28

~60% (13/22) of After-quiet Emissions detected by BAT are also detected by XRT
Conclusions

• Quiet Durations v. Emission Durations
 – No correlation between the pre-quiet emission and quiet time durations was found
 • Quiet time durations which are associated with precursors tend to be short, ~100s
 – A weak correlation between after-quiet emission and quiet time duration seems to exist
 • The longer the quiet time, the limit of the after-quiet emissions seem to decrease
 – Quiet times seem to be proportional to, and constitute the bulk of, the total burst duration
 – Gamma-ray emission durations seemed to be constrained to approximately 150s

• Detections
 – About 60% of after quiet emissions tend to be energetic enough to appear in both the BAT and XRT time histories
Conclusions

• **Discussion**
 – The lack of correlation between the burst emission parameters suggest several causes...
 • The progenitor is constantly and variably active. This behavior would explain the variable nature of the emissions versus their quiescent times.
 • After-quiet emissions could be indicative of refreshed shock activity. Late time emissions could be the result of subsequent progenitor ejecta interacting with the circumstellar medium; a late external shock.
 – These results do no support the 1-to-1 ratio of quiet time to after-quiet emission duration proposed
Conclusions

• Possible forward work...
 – A larger data set of multi-episodic bursts is needed
 • Could include BATSE (CGRO) bursts
 – BATSE bursts cover a different energy range
 • Could use x-ray flaring emissions and their quiescent times to expand upon the current swift data catalog

• Questions?
References (& special considerations)

This study was made possible by data collected and distributed by the NASA Astrophysics Science Division

