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Overview

 Objective: To evaluate differences in nuclear physics 
models of the Geant4 Monte Carlo Toolkit  and compare 
results to MCNPX

 Motivation: Risk of second cancers unknown

“Does it make any sense to spend over $100 million on a 
proton facility, with the aim to reduce doses to normal 
tissues, and then to bathe the patient with a total body dose 
of neutrons …”

Hall, Technol in Ca Res Treat 2007;6:31-34

Presenter
Presentation Notes
Monte Carlos are prediction models used 

Why? The risk of second cancers from passive scattering proton radiotherapy is relatively unknown. We aim to provide a better Understanding uncertainties in prediction models is an important cross-check for risk assessment models



Pictorial Graph of Comparison with Other Radiation



Relevant Physics Mechanisms

 Therapeutic dose
 Predominated by stopping power, multiple coulomb 

scattering, and energy straggling

 Stray dose
 Predominated by nuclear reactions and neutrons
 described by the underlying nuclear physics interactions

 direct nucleon-nucleon collision processes

Presenter
Presentation Notes

Stray dose –
Important to described by the underlying nuclear physics interactions 
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Methods: MC Model of  Treatment Head

Presenter
Presentation Notes
Put Total Distance from beam entrance to detector

Profile Monitor  beam position information
Reference Monitor  beam intensity information
Primary & Sub-dose Monitors  beam symmetry information 
Thickness of the Brass aperture is 8 cm
Tally receptor (r = 6 cm) locations: 
isocenter (20 cm air gap)
100 cm downstream of the isocenter
±100 cm lateral to the isocenter 
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Methods: Range Modulator Wheel (RMW)

 RMW at PTC-H
 comprised of W-alloy and Al-alloy

 W-alloy (first scatterer)  lateral 
spread of beam

 Al-alloy blades  beam modulation
 three-blades

 opening angles  define beam 
penetration depth of each B.C.

 

Al-Alloy

Schematic of RMW

W-Alloy

Presenter
Presentation Notes
W-Alloy: ~ 95% W; ~ 3% Ni; ~ 1.5% Fe
Al-alloy: ~95% Al; ~ 0.006% Si; ~ 0.01% Fe; ~ 0.001% Cu; ~ 0.006% Mn; ~ 4.7% - Mg; 0.006% Cr
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Methods: Spread Out Bragg Peak (SOBP)

 Curve A  Pristine Bragg 
Curve
 sharp Bragg peak

 Curve B  SOBP
 maximum dose uniformity 
 tumor coverage

 Rotating RMW blades 
sweep through the proton 
beam  beam modulation
 shift Bragg curves at depth
 produces SOBP
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Methods: MC Model of  Treatment Head 
Using TOPAS

Presenter
Presentation Notes
Profile Monitor  beam position information
Reference Monitor  beam intensity information
Primary & Sub-dose Monitors  beam symmetry information 
Thickness of the Brass aperture is 8 cm
Tally receptor (r = 6 cm) locations: 
isocenter (20 cm air gap)
100 cm downstream of the isocenter
±100 cm lateral to the isocenter 






Methods: Nuclear Models
 Employ Geant4 Monte Carlo toolkit and also MCNPX to: 

 Calculate therapeutic absorbed 
 Calculate neutron fluence

 Compare results of nuclear physics models 
 Geant4 Models 

 Bertini model (Baseline model) 
 Binary Cascade model (BIC)
 Intranuclear Cascade model/ABLA De-excitation model (INCL-ABLA)

 MCNPX Models 
 Bertini model (Baseline model)
 Cascade Exciton Model (CEM)
 Liège Intranuclear Cascade Model INCL4
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Methods: Nuclear Reactions of  Relevance

Higher Kinetic 
Energy Particle
Emission

Lower Kinetic 
Energy Particles
Emission

Waters, L. 2002 MCNPX User’s Manual Version 2.3.0 LA-UR-02-2607

First stage: Intranuclear cascade 

Intermediate stage: 
Pre-equilibrium 

Second stage: Evaporation 

Final stage: Residual 
de-excitation

fission 



11

Methods: Secondary Neutron 
Dosimetric Quantities Calculated

 Total Ambient Neutron Dose Equivalent per source 
proton: H*(10)/p = Σ (Φ/p)i * (H*(10)/Φ)i * ∆Ei
 Following ICRP Publication 74 (1996)

 Therapeutic absorbed dose per proton: D/p
 Following Zheng et al. (2008)

 Ambient Neutron Dose Equivalent per 
Therapeutic absorbed dose:

 H*(10)/D = H*(10)/p / D/p
 Following Yan et al (2002)

Presenter
Presentation Notes
H*(10)/D  At a point in a radiation field is the dose equivalent that would be produced by the corresponding expanded and alinged field in the ICRU sphere at a depth, d, on a radius opposing the direction of the aligned field.




Results

Using three nuclear physics models:

1. therapeutic absorbed dose in water

2. produced neutron spectral fluence in air
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Results: Therapeutic Absorbed Dose (SOBP)

Geant4 version 9.4.p06
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Results: Therapeutic Absorbed Dose

Bertini
model 1

(Baseline)

Binary 
Cascade
model 2

INCL-
ABLA

model 3
|zBC-zBertini| |zINCL-ABLA-zBertini|

Dose quantities

mm mm mm mm mm

pristine distal 90% 
dose point 114.0 113.9 113.9 0.1 0.1

pristine distal 
80%-20% dose 
point

4.9 4.9 4.9 0.0 0.0

SOBP distal 90% 
dose point 114.98 114.97 114.96 0.1 0.1

SOBP proximal 
95%-distal 90% 
width

92.90 93.15 92.68 0.2 0.25

Presenter
Presentation Notes
Busy plot, these are the widths we got for all models… the abs. value of the difference
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High energy peak
(Cascades…)  ~ 75 MeV 

Baseline Model 1 (Bertini Model)

Alternative Model 2 (CEM)

Alternative Model 3 (INCL4)

Low energy peak (~1 MeV)
(Evaporation…) 

Incident Proton energy: 160 MeV

MCNPX: Stray Neutron Spectral Fluence

Presenter
Presentation Notes
Neutron spectral fluence as a function neutron energy… biggest take away is that there’s wide discrepency between nuclear physics for these models. 
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Bertini
model 1

(baseline)

CEM
model 2

INCL4
model 3 |H *(10)/DCEM-

H *(10)/DBertini|
|H *(10)/DINCL4-
H *(10)/DBertini|

receptor 
location

H*(10)/D(X)
mSv/Gy

H*(10)/D(X)
mSv/Gy

H*(10)/D(X)
mSv/Gy mSv/Gy mSv/Gy

At 
isocenter 6.92 ± 0.25 4.84 ± 0.21 4.55 ± 0.20 2.08 ± 0.29 2.37 ± 0.32

At 100 cm 
downstream 
from 
isocenter

0.32 ± 0.05 0.21 ± 0.04 0.21 ± 0.04 0.11 ± 0.06 0.11 ± 0.06

At 100 cm 
lateral to the 
isocenter 0.44 ± 0.06 0.33 ± 0.05 0.36 ± 0.06 0.11 ± 0.08 0.08 ± 0.08

Results: H*(10)/D (SOBP)

Presenter
Presentation Notes
Ambient neutron dose per therapeutic dose



Summary
 Compared baseline model (Bertini) to two alternative nuclear 

physics models (Binary Cascade and INCL-ABLA) in Geant4   
and (CEM and INCL4) MCNPX
 in-phantom therapeutic absorbed dose 

 ~ 1 – 2 percent in dose
 < 1 mm at depth

 in-air neutron spectral fluence
 < factor of 2 at most neutron energies

 in-air H*(10)/D
 Bertini (baseline) model in good agreement with measured data from 

Tayama et al (2006)
 CEM and INCL4 under predict neutron dose 

w.r.t. Bertini model by 2 mSv/Gy at isocenter (~30% deficit)
 Simulations are underway in our computational laboratory to 

finalize calculations of the neutron energy fluence in ICRU sphere 
using TOPAS for H*(10) estimates

Presenter
Presentation Notes
Understanding uncertainties in prediction models is an important cross-check for risk assessment models.  The results lend confidence to previous work from our group.  Leading to a deficit in the predicted neutron dose of about 30%.
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Thank you
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