Envirothon 2022 Teacher Workshop Resource Extraction from Human and Animal Waste

Sachiyo Tanaka Mukherji, Ph.D. Department of Environmental Sciences University of Houston Clear Lake

3/4/2022

Outline

Resource recovery introduction: Methane, freshwater, nutrients

Human and animal waste: How much do we generate and what's in there?

Example 1: Urine as a nutrient resource

Example 2: Sewage as a methane, freshwater, and fertilizer resource

Example 3: Manure as a methane and fertilizer resource

Conclusion

Questions?

Organic compounds contain C-H bonds

- N rch.
- Fish/meats: no growth hormones, antibiotics
- Not genetically modified.

Organic matter

Organic compounds contain C-H bonds.

Organic compounds

Organics Organic matter

Recovery of resources: Methane gas, CH₄ from organic matters

- Methane is the main component: 70-90% of natural gas.
- Natural gas is a nonrenewable fossil fuel.

Organic matter \rightarrow CO₂ + <u>CH₄</u>

Under anaerobic conditions, organic matter $\rightarrow CO_2 + \underline{CH}_4$

Microorganisms break down organic matter to methane gas under <u>anaerobic</u> conditions (no oxygen) →Renewable! Learn from nature!

Recovery of resources: fertilizer

World fertilizer consumption and population in the past century

The human population is predicted to reach 10 billion by 2050.

http://12.000.scripts.mit.edu/mission2017/fertilizers-2/

	GUARANTEE	DAN
Total Nitrogen (N)		Deri
3.5% Ammoniacal Nitrogen		Phos
20.5% Urea Nitrogen		Borie
Available Phosphate (P2O5)		EDT/
Soluble Potash (K2O)		Infor
Boron (8)	0.02%	meta
Copper (Cu)	0.07%	http
0.07% Water Soluble Copper	(Cu)	
Iron (Fe)		KE
0.15% Chelated Iron (Fe)		
Manganese (Mn)		MAN
0.05% Chelated Manganese	(Mn)	IIII
Molybdenum (Mo)	0.0005%	Scot
Zinc (Zn)		1411
0.06% Water Soluble Zinc (Zi	n)	Mary

Plant nutrients: N and P

Synthetic fertilizer production

- Nitrogen fixation process: N₂ gas (78% of the air) → N-forms that can be used by living organisms (i.e., ammonia, nitrate, etc.)
- Natural process: done by microorganisms
- Artificial process: Haber-Bosch process (fossil-fuel based) N_2 + hydrogen \rightarrow ammonia
- 80% of commercially produced ammonia: fertilizer
- Studies: 20~50% of fertilizer applied is taken up by crops.

Environmental impacts: excess nutrients upsets healthy environmental system in natural water systems

Exponential algal growth

Hypoxia

"NOAA-supported scientists announced that the 2021 Gulf of Mexico "dead zone" is equivalent to more than four million acres of habitat potentially unavailable to fish and bottom species." EPA

Alternative fertilizer: Compost from waste, Inorganic fertilizer (struvite) synthesis from urine (part of natural N-cycle)

Recovery of resources: freshwater is a renewable but exhaustible resource.

Water Stress in the U.S.

 Stressed: when demand > 40% of available supply

The Ogallala Aquifer

The net groundwater accumulation rate is -2.16 inch/ year.

Reclaimed wastewater: Sewage to drinking water

Human waste: what's in there?

Domestic untreated wastewater: By weight Others (0.1%) Water (99%)

- organic matters (feces, urine, toilet paper, dirt, food, grease, hair, cleaning chemicals)
- microorganisms (including

pathogens)

BOD (biological oxygen demand): how much organic matters are present in the water <u>Organic matters</u>+ dissolved $O_2 \rightarrow CO_2 + H_2O$ +residue

• Analytical instruments: only can measure the concentration of an individual chemical compound in the water.

How much oxygen has been consumed? → indication of the amount of organic matter n the water. Houston Public Works: $W/O O_2 (air)$ Organic matter $\rightarrow CO_2 + CH_4$

- The largest water /wastewater utility in T.
- 2.3 million people served.
- 277 MGD (million gallons per day) wastewater treated.
- BOD₅ = 400 mg/L

(A good-sized bath holds 40 gallons, so a million gallons would be 25,000 baths) x 277

Raw wastewater compositions

Contaminants	Range, mg/L
COD	250 – 1,000
BOD5	110 – 400
Total Nitrogen (as N)	20 – 85
Organic Free NH3 NO2- NO3-	8 – 35 12 – 50 0 0
Total Phosphorus (as P)	4 – 15
Organic Inorganic	1 - 5 3 - 10
Alkalinity (as CaCO3)	50 – 200
Grease	50 – 150

Metcalf & Eddy 3rd edition Wastewater Engineering

- Urine accounts for 1% of the total volume of the wastewater. (ex. 1% of 277 million gallons)
- <80% N load and <50% of P are from urine.

16

Animal waste: What's in there?

Beef waste characterization—as excreted

Components	Units	Beef cow in confinement ^{2/}
Weight	lb/d/1000 lb AU	104
Volume	ft ³ /d/1000 lb AU	1.7
Moisture	% w.b.	88
TS	lb/d/1000 lb AU	13
VS	lb/d/1000 lb AU	11
BOD	lb/d/1000 lb AU	2.5
N	lb/d/1000 lb AU	0.35
Р	lb/d/1000 lb AU	0.08
K	lb/d/1000 lb AU	0.25

https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content =31475.wba

Animal waste: What's in there?

• Poultry waste characterization—as excreted

(b) Layer in units of per day per 1,000 lb animal unit

Components	Units	Layers 1/
Weight	lb/d/1000 lb AU	57
Volume	ft3/d/1000 lb AU	0.93
Moisture	% w.b.	75
TS	lb/d/1000 lb AU	15
VS	lb/d/1000 lb AU	11
BOD	lb/d/1000 lb AU	3.3
Ν	lb/d/1000 lb AU	1.1
Р	lb/d/1000 lb AU	0.33
K	lb/d/1000 lb AU	0.39

Example 1: Can we use human urine as a fertilizer?

https://faculty.ksu.edu.sa/sites/default/files/472_bch_normal_c onstiturtion_of_urine.pdf

Example 1: Can we use human urine as a fertilizer?

- Why not? 16th century in Asia: Human excretes were commonly used as a fertilizer.
- Today:
 - Urine + feces mixture collection system
 - Presence of micropollutants (natural hormones, pharmaceutical products, antibiotic resistance gene)
 - Presence of pathogens

How farmers in Switzerland perceive fertilizers from recycled anthropogenic nutrients (https://pubmed.ncbi.nlm.nih.gov/12926620/)

- 467 Swiss farmers.
- 57% good/very good idea to use urine-based fertilizer
- 30% concerned about the fate of **micropollutants** in urine.

Example 1: Human urine as a fertilizer

- Direct use of urine as fertilizer: Urine storage for weeks to months.
- Chemically extract nutrients from urine: Struvite is an effective fertilizer.

 $Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O \rightarrow MgNH_4PO_4 \bullet 6H_2O$

Example 1: Human urine as a fertilizer: Pollution transfer of micropollutants to crops/environment?

- Human hormones: The struvite contained no or very little 17β-estradiol, commonly found natural female hormone in the environment.
- Urine storage: antibiotic-resistant genes were degraded, meaning, reduced risk of spreading antibiotic resistance in the environment.

Example 2: Can we generate energy, fertilizer, and freshwater from the sewage?

- 1) Municipal wastewater treatment
 - a) Liquid \rightarrow reclaimed water
 - b) Solid \rightarrow CH₄
 - c) Solid \rightarrow fertilizer
- 2) Sewage treatment system
 - a) Solid \rightarrow compost and fertilizer

Plant Process Schematic

Central Valley Water Reclamation Facility

Primary Treatment: remove settleable and floatable solids

Water: Proceeds to Secondary treatment

Solids:

- Bar screen removed items: sticks, plastics, large objects are disposed to landfills.
- Gravity settling mechanism removes <40% BOD and <65% suspended matter

Secondary Treatment: BOD removal by microorganisms.

Organic matter + $O_2 \rightarrow CO_2$ + water + more bacteria + metabolic byproducts

Some sludge is returned to the aeration tank to maintain actively degrading microbial community in the reactor.

Disinfection of treated wastewater \rightarrow return to river

- Chlorinated chemicals, UV lights, or Ozone
- Inactivated any remaining microbes.

Can we produce drinking water from sewage?

Sources/Usage: Public Domain.

Astronauts abord the International Space Station drink reclaimed urine.

Bottles of NEWater, recycled sewage water that is given away in Singapore to help the public get over the "yuck" factor for what the nation hopes will become a major component of its water supply. *Elizabeth Weise*

Credit: NASA

Reclaimed Wastewater: Colorado River Municipal Water District (CRMWD), Odessa and Snyder, TX

Treatment Sequence

R.O.

M.F.

UV

29

Reclaimed Wastewater: Colorado River Municipal Water District (CRMWD), Odessa and Snyder, TX

- Serves more than 600,000 Texans
- Reclaimed water:
 - Recharge groundwater
 - Supply industrial processes
 - Irrigate crops
 - Augment potable supplies

Sludge (Biosolids) treatment: **anaerobic digester** to generate CH₄

Sludge (organic matter) + microorganisms \rightarrow CO₂ + <u>CH₄</u>

- Fuel for generators to power
- Sell to electric utilities (purify)
- Boiler fuel for on-site heating

Sludge (Biosolids) treatment: composting biosolids (dehydrated) from the digester

c) Solid → fertilizer (compost)

Successful composting: High temperature can inactivate w Adjust C/N ratio by adding other si

How effective is composting at killing pathogens?

Table 8 Temperature required to eliminate some pathogens

Microorganism	Temperature	Exposure time
Salmonella spp	55'C	1 hour
	65°C	15-20 minutes
Escherichia coli	55°C	1 hour
	65°C	15-20 minutes
Brucella abortus	55°C	1 hora
	62°C	3 minutes
Parvovirus bovino	55°C	1 hour
Ascaris lumbricoides eggs	55°C	3 days

Source: Jones and Martin, 2003

Heat exchanger? Compost to heat water?

https://smallfarms.cornell.edu/2012/10/compost-power/

Example 2: Can we generate energy, fertilizer, and fresh water from the sewage/ municipal wastewater treatment?

- 1) Municipal wastewater treatment
 - a) Liquid \rightarrow reclaimed water
 - b) Solid \rightarrow production of CH₄
 - c) Solid \rightarrow fertilizer
- 2) Sewage treatment system
 - a) Solid \rightarrow compost and fertilizer

Example 2: Sewage treatment system

- 20% of the new homes built in TX have On-site Sewage Facilities (OSSF).
- Based on natural processes

 soil absorption
 microbial degradation
 microbial uptake of nutrients
- Design consideration
 - $\circ\,$ soil texture
 - o distance to groundwater
 - $\,\circ\,$ tank size and holding time
- Solid: biodegradation and physical removal

https://www.epa.gov/septic/types-septic-syst

Please note: The number of compartments in a septic tank vary by state and region

Example 2: Sewage treatment system

- Graywater: irrigation
- Urine tank: fertilizer
- Solid: on-site compost

https://agrilifeextension.tamu.edu/library/water/onsite-wastewater-treatmentsystems-graywater-use-and-water-quality/

Example 3: Animal Waste Management

Animal waste: What's in there?

Beef waste characterization—as excreted

Components	Units	Beef cow in confinement ^{⊉⁄}
Weight	lb/d/1000 lb AU	104
Volume	ft3/d/1000 lb AU	1.7
Moisture	% w.b.	88
TS	lb/d/1000 lb AU	13
VS	lb/d/1000 lb AU	11
BOD	lb/d/1000 lb AU	2.5
Ν	lb/d/1000 lb AU	0.35
Р	lb/d/1000 lb AU	0.08
K	lb/d/1000 lb AU	0.25

https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content =31475.wba

Example 3: Animal Waste Management

- Collection of solid manure.
- Mechanical separation of solid and liquid.
- Flush the remaining manure with water.
- Open lots: Runoff from the surface.
- Liquid manure (less than 5% solid) is stored in the lagoon or other engineered containments.
- Land application as a soil amendment.

Example 3: Animal Waste Management: Compost and CH₄

What's Worth More: A Cow's Milk or its Poop?

	Per 2,000 cow dairy	\$ cost / cow
_	Digester maintenance	-294
5	Energy generation	+69
	CA incentive (Low Carbon Fuel Standard)	+1,935/year
	Net	+1,710

https://www.sciencedirect.com/topics/agri cultural-and-biological-sciences/manuremanagement

https://asmith.ucdavis.edu/news/cowpower-rising

Livestock ruminants: CH₄ emission

Methane formation in the rumen of a dairy cow

https://www.pnas.org/doi/10.1073/pnas.1600298113

 CH_4 is 84 times more potent greenhouse gas over 20 years than CO_2 . CA farmer: increases number of cows \rightarrow increases economical profits, but also increases CH_4 emission from cows. Pros. and Cons.?

Environmental benefits

- Reduce natural gas demand to generate electricity (renewable alternative energy source) → carbon cycle
- Reduce demand for synthetic fertilizer (natural gas-dependent process) → nitrogen cycle
- Reduce freshwater stress happening in many parts of the U.S.
 → water cycle
- May increase farmer's profit (increase GHG emission?)

Questions?

Keep it simple and straightforward!

Mukherji@uhcl.edu