Using National Surveys to Evaluate the Condition of Texas State-wide Fish Communities

Cory Scanes, Jenny Oakley, George Guillen
University of Houston – Clear Lake, Environmental Institute of Houston
National Aquatic Resource Surveys (NARS)

• United States Environmental Protection Agency
 • Clean Water Act – must report on condition of nation’s water resources

• Designed to assess health of water resources in the United States
 • Nationwide standardized collection protocols

• The Surveys:
 • National Coastal Condition Assessment
 • National Lakes Assessment
 • **National Rivers and Streams Assessment**
 • National Wetland Condition Assessment
National Rivers and Streams Assessment (NRSA)

• Wadeable Streams Assessment (2004)
 • First published report for NARS in 2006
 • Small, wadeable streams only

• NRSA implemented 2008-09, conducted every 5 years to:
 • Assess condition of lotic waterbodies of the USA
 • Wadeable and Non-Wadeable

• Site Characteristics Assessed
 • Water quality
 • Physical habitat
 • Fish and invertebrate communities
NARS and EIH

• Field collection for all 4 NARS surveys
 • Partner with USEPA and TCEQ

• Sampled 64 sites for 2013-14 NRSA

• Sampled 41 of 81 total sites for 2018-19 NRSA
 • 22 sites resampled from 2013-14
Objectives

• Compare fish community structure of 19 sites between two NRSA surveys
 • Detect spatial differences
 • Assess temporal changes

• Identify changes in stream health utilizing fish as indicators
Methods – Pre-Visit

• Probabilistic sampling design
 • Random site selection from National Hydrography Database provided by USEPA

• Desktop reconnaissance of sites
 • Wadeable vs. Non-Wadeable
 • Small vs. Large
Methods

Reach length = 40x channel width

Wadeable

Small Wadeable Stream: Mean Channel Width ≤ 12 m

Large Wadeable Stream: Mean Channel Width ≥ 13 m

Non-Wadeable

Small Nonwadeable River: Mean Channel Width ≤ 12 m

Large Nonwadeable River: Mean Channel Width ≥ 13 m

Methods

• E-shock protocol – Primary collection method
 • ~500-700 seconds of button time per subreach
 • Most effective shocking unit* selected for each site

• Fish identified to species and enumerated in field, unknowns pickled and processed in lab

*Smithroot: LR-24, 2.5 GPP, 5.0 GPP, 9.0 GPP
Methods - Analysis

• PRIMER 7
 • CPUE \rightarrow log(x+1) transformed
 • Bray-Curtis similarity
 • Ecoregion, River Basin, Stream Order
 • ANOSIM, SIMPER, nMDS

• Richness (S) & Shannon Diversity (H)

• Index of Biotic Integrity (IBI) calculated by Level III ecoregions (USEPA)
 • Aquatic Life Use (ALU): Limited, Intermediate, High, Exceptional
Results – Communities in Space

• ANOSIM

• Edwards Plateau fish community significantly different from all other ecoregions:
 • Contributors (SIMPER):
 • ↑ L. auritus, C. venusta
 • ↓ L. cyanellus, G. affinis, P. vigilax
Results – Communities in Space

NRSA Fish Abundance
nMDS of Site by River Basin

NRSA Fish Abundance
nMDS of Site by Stream Order

Gulf of Mexico
Results – Communities Through Time

• Richness (S)
 • 12 of 19 sites exhibited increase in number of species from 2013-14 to 2018
 • Greatest ↑ = Neches R., E. Carancahua C., Angelina R., Long C.
 • Greatest ↓ = Llano R., Brazos R., Colorado R.

• Diversity (H)
 • 9 of 19 sites exhibited increase in diversity
 • Greatest ↑ = Long C., Trinity R.
 • Greatest ↓ = Brazos R., Llano R., Colorado R.
Results – Communities Through Time

• Upgraded ALU:
 • Neches R., South Fork San Gabriel R., Brady C., Medina R., Spring C., Guadalupe R.

• Downgraded ALU:
 • Colorado R., Nueces R., White Oak Bayou
Discussion – Communities in Space

• Evident grouping of communities by Ecoregion – Expected (Linam et al. 2002)
 • Possible drivers: climate gradient; in-stream factors

• Sites by River Basin exhibit longitudinal gradient of fish communities
 • Coastal Plains and E. Texas sites exhibit greater abundance and diversity (Connor and Sutkus 1986, Lane 2014)

• Distribution of sites by Stream Order – Gear Limitations
 • 7th-order streams located more central
 • Difficulty netting in swift waters
 • Location of e-fishing
 • Fish with the flow
Discussion – Communities Through Time

• Looking Better:
 • Long Creek consistently increased in S, H, IBI
 • Highly urbanized, transects not connected
 • Neches River greatest increase in S and IBI

• Impaired:
 • Colorado River – drop in all indices \rightarrow greater % of non-native individuals
 • White Oak Bayou – drop in IBI \rightarrow greater % of non-native and tolerant fishes in 2018
 • Nueces River – drop in IBI, H, J’ \rightarrow increase in non-native, tolerant, and diseased fish
 • Llano River – drop in all indices \rightarrow greater % of non-native fishes
Limitations

• Data collected on paper forms (2008-09 & 2013-14) or USEPA NARS app (2018) on iPad
 • Habitat data recorded over multiple forms – difficult to consolidate into one database
 • NARS app does not output data into usable format
 • **More user-friendly output being discussed with EPA

• Limited staff and numerous projects
 • Need graduate students!!
 • Not enough hours in the day to analyze all this data
Conclusion

• The NRSA allows for comprehensive assessment of water bodies across the nation
 • Useful to inform managers of state waterbody conditions

• Elucidates need for management plan for several Texas streams

• Future Work
 • Sample more sites in 2019!
 • Analyze ecoregion and basin trends using all NRSA data
 • Assess changes in habitat through time
Acknowledgments

• Mandi Gordon – NARS Extraordinaire
• USEPA – Region 6: Rob Cook, Laura Hunt
• TCEQ: Lauren Pulliam, Laura Ryckman, Sarah Whitley and numerous volunteers who assisted in the field
• Mike Lane and Marc Mokrech
• Kaylei Chau
• Field Crews are invaluable!
 • Nakaila Kirkpatrick
 • Zoe Cross
 • Jake Swanson
 • Meaghen Wedgeworth
 • Natasha Zarnstorff
 • Sherah Loe
 • Tyler Swanson