You may use the information and images contained in this document for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include proper citation. If material is used for other purposes, you must obtain written permission from the author(s) to use the copyrighted material prior to its use.
EVALUATION OF MULTI-DECADAL CHANGES IN THE NEKTON COMMUNITY OF THE LOWER BRAZOS RIVER: POTENTIAL INFLUENCE OF FRESHWATER INFLOW

Alex Miller and George Guillen
University of Houston- Clear Lake
Importance of Gulf Coast Estuaries

• Commercial harvesting supports economy (Zimmerman et al. 2002)

• Fish assemblages are indicators of water quality (Araujo et al. 2000)
Riverine Deltaic Estuary

- Brazos estuary is unique
- Highly dynamic system
- Complex, fluctuating species assemblages
Study Objectives

• Relationship of freshwater inflow on:
 o Salinity
 o Water quality
 o Available habitat
 o Nekton community

• Needed for adaptive management
Data Collections Methods

• Review of Past Studies on lower Brazos River
 o Biological: bottom trawl collections
 o Hydrological: mean daily and monthly flow
 o Water quality: temperature, salinity, dissolved oxygen

• New Data collection on lower Brazos River
Nekton Studies – Brazos River

• Johnson (1977) – TPWD
 o Inventory lower Brazos nekton monthly; 1973-1974

• Emmitte (1983)- Dow Chemical
 o Inventory lower Brazos nekton; 1982
Sampling Approach – New Data

- Sampled 4 of Johnson’s sites each month for 1 year
- Water Quality:
 - YSI multiprobe data logger: Temp, DO, Sp. Cond., Salinity, pH and depth
 - Turbidimeter: water clarity (NTU)
- Hydrology
 - USGS gage at Rosharon
- Fish Collection: Otter trawls, supplemented with other methods
Data Analysis

- Graphical comparisons of hydrology, species numbers and abundance
- Used IHA (Index of Hydrological Alteration = IHA) to evaluate long term trends in hydrology
- Multivariate Cluster Analysis: relation to species similarity with sites and times
Current Study Results
Salinity by River Km

![Graph showing salinity by river km with data points]
PCO1 (69.4% of total variation)

PCO2 (21% of total variation)

Normalise
Resemblance: D1 Euclidean distance

Site

Water Temp (°C)
Salinity (psu)
D.O.(mg/L)
Depth (m)

0.6
11.7
21.5
42.4
0.6
11.7
21.5
42.4
Physiochemical Sample Similarity

Normalisation: D1 Euclidean distance

RKM
0.6
11.7
21.5
42.4
Physiochemical Site Similarity

Normalise
Resemblance: D1 Euclidean distance

Site

0.6
11.7
21.5
42.4
Spot
Bay anchovy
Atlantic croaker
Brown shrimp
White shrimp
Sand seatrout
Gulf menhaden
Striped anchovy
Blue catfish
Silver perch
Abundant Taxa MDS

Transform: Log(X+1)
Resemblance: S17 Bray Curtis similarity

Site

2D Stress: 0
Transform: Log(X+1)
Resemblance: S17 Bray Curtis similarity

2D Stress: 0.13
Number of Nekton Taxa by Month and Site

Site KM
- 0.6
- 11.7
- 21.5
- 42.4
Nekton Presence Assemblage Similarity

Transform: Presence/absence
Resemblance: S17 Bray Curtis similarity

RKM
0.6
11.7
21.5
42.4
Comparison with Past Studies

- Hydrologically different
- Effort and duration varied

- Current study: 4 sites, 0.6-42.4 RKM, 3 replicates; 12 months; 144 total tows
- Johnson 1973-5: 5 sites, 0.6-42.4 RKM, 2 replicates; 24 months; 240 tows
- Emmittte 1982: 4 sites, 3 – 9.5 RM, 16 tows; 12 months (quarterly), no replicates
Daily Average Flow by Year

Year
Daily Average Flow (cfs)

6844 (med)
3083 (25th)
10470 (75th)
Average No. Taxa by Study

Study
- Emitte 1983
- Johnson 1977
- Present

<table>
<thead>
<tr>
<th>No. Taxa</th>
<th>KM</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Johnson 4.5</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Actrorhinchus lookdownensis</td>
<td>0</td>
</tr>
<tr>
<td>Agrius coeruleus</td>
<td>0</td>
</tr>
<tr>
<td>Atherinops affinis</td>
<td>0</td>
</tr>
<tr>
<td>Beryx splendens</td>
<td>0</td>
</tr>
<tr>
<td>Chlorurus squalus</td>
<td>0</td>
</tr>
<tr>
<td>Paralichthys elassodon</td>
<td>0</td>
</tr>
<tr>
<td>Pogonias cromis</td>
<td>0</td>
</tr>
<tr>
<td>Scomberomorus cavalla</td>
<td>0</td>
</tr>
<tr>
<td>Symphurus aequorhynchus</td>
<td>0</td>
</tr>
<tr>
<td>Symphurus mysteriosus</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The table shows species counts across different locations.
Discussion

- Decreased peak Brazos River freshwater inflows
- Flow regime impacts lower river nekton communities more so than upper reaches
- Greatest diversity at the mouth of river

Thanks to all who helped!