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44,000 sq miles



Trinity and San Jac
Provide more than
80% of fw. inflow

NOAA 1988



Circulation
EEE S

TWDB 1982



Influence of HSC
on tidal transport &
salinity

NOAA 1993



Facts and Figures

44,000 sg. miles estuarine drainage area
600 sg miles — surface area

20-25% of drainage area urbanized (local
nigher)

High density population and growing

Projected to add many more people in next 25
years

Concerns about freshwater supplies
Bacteria, dissolved oxygen and nutrient issues




Facts and Figures

10 to 12 feet maximum (except for channels)
Mean summer high temp — 80s (F)

Mean winter low mid 40s

Mean annual rainfall 50 inches

Southerly winds, frequent storms

Diurnal cycle, 14 day, maximum tide 2 ft
Water levels > 15ft hurricane, norther < 2ft
Wind driven, positive estuary most years.




Facts and Figures

Clay solls

Native Prairie (west) and piney woods
north and east.

Low slope

Rapid urbanization has led to flashy urban
streams, Increase sedimentation and
turbidity

Many waterbodies on 303d list for
dissolved oxygen, bacteria and some
nutrients






Point Sources

POINT SOURCE LOADS




Point Source Loads

Galveston Bay contains 747 industrial point
sources, the largest concentration of in any
estuarine area nationwide

Total number of permitees — 1,932 in watershed
(1,151 below Lake Livingston and Houston dam)

Largest number of permitted outfalls in state

Numerous small package plants, few regional
plants. Maintenance an issue in past

Septic tanks in rural areas (poor soils, much
runoff)

NOAA 1990. Estuaries of the United States



Figure 4.5 - Estimated Loads of Total Nitrogen into Galveston Bay from the Trinity River al Romayor and the San Jacinto

River from 1969 through 1988

Point Source Characterization Project
Galveston Bay Mational Estuary Program
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Fipure 4.8 -« Estimated Loads of Total Fhosphorus into Gelvesion Bay from Tributaries in the Hoostom Aren from 194
through 19835

Paint Sowrce Charncterizntion Project
Cinlveston Bay National Estuary Program
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Non-Point Source Load
Estimates

Newell et al. 1992: TCB 2001,
Jensen 2009



Newell et al. 1992. (red = urbanized)



Newell et al. 1992. (red = highest non-point source loads of N average year)



Newell et al. 1992. (dark blue = highest non-point source loads of P average year)



Point vs. Non-point Sources
TCB 2001

1. In most cases the non-point contribution to N
and P dominates point source contributions.

2. There are, however, some cases in which the
point source clearly contributed more loadings.
Namely, In the San Jacinto River basin, Total P
and Total N are controlled by point source
contributions.

3. In the Clear Creek segment of the San Jacinto-
Brazos Coastal basin, point source loadings of
Total P and Total N were also high.









Summary Findings

Point source loads to Galveston Bay were investigated by Armstrong and Ward (1993). Their
study tound total N loads from point sources to be 8425 Metric Tons per vear (MT/yr),
reasonably close to our 1991 estimate of 9.200 M'T/yr. Nonpoint source loads were estimated for

the NEP by Newell, et. al. (1992). They estimated the average nonpoint source total N load for
the entire watershed to be 23,128 MT/vr, somewhat larger than the 1991 paper estimate of
approximately 12,400 MT/vr.

Jensen et al. 2009. NUTRIENT INPUTS TO GALVESTON BAY
AND UPCOMING CRITERIA CONSIDERATIONS



Effect of Lake Livingston
Reservoir






Figure 3 - Total Estimated TN Loadings to Lake Livingston
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Figure 4 - Average Daily Loads of TN and TP
to and from Lake Livingston
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Figure 6 - TN and TP Removal Through Lake Livingston
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Overall Budget - N



TN INPUTS

Median Inflows
Wastewater

Direct Kain

Nitrogen Fixation
Entrainment from Gulf

TOTAL INPUTS

TN OUTPUTS

Advection to Gulf
Entrainment to Gull
Transter to Fisheries
Sediment Accumulatior
Denitritication

TOTAL OUTPUTS

Brock 1996 TWDB. 1988 — 1990 Data

AMOUNTS (MT/YR)

30.386
7.300
700
560
1,749

40,695

AMOUNTS (MT/YR)

0,752
24,460
1.0065
2.25]

3. 167

40,695




Atmospheric Loading
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Figure 1. Atmosphenic sampling station locahons in coastal Texas.

Wade 2002. Galveston State of the Bay 8.



TRIADS RAINFALL AND NUTRIENT NITROGEN

O Ralmfall [mmwm
O Todal M jumsalil}

)

i 8 FT

T T e

T .

.
[
.
’
L
’
o
?
.
M

T T T T
T
T

13 14T 150 131 N 214 X35 135 13T 3 338 353 14
Tulian Dary (1995 and 1996)

b e

14
TS

Figure 2. Ramnfall and total nument mitrogen for Seabrock, TX station dunng operation m 19935
through 1996 Note the large difference between manne and whan sourced mitrogen
concenfration.




MNitrogen Deposition (kgfha-yr)

B Wet Nitrate Deposition
4 Wet Ammonium Deposition

MLCC 1998
TAMLUCE 2004
TAMUCE 2005

FARMLLC 19897
TAMUCE 2002
TAMNLCCT 2003

T

Figure 3. Nitrogen deposinon to Galveston (Seabrook) and Corpus Chnsa (TAMUCC) Bays.
** mdicates one rain event omtted from Seabrook total.




Atmospheric Loading

The total input from atmospheric deposition
of nutrient nitrogen directly to the Bay Is
estimated as 1.76x106 Kg/year or 8.6% of
the total nutrient nitrogen input to Galveston
Bay with another 2.8% from atmospheric
Input to the watershed.

Therefore, atmospheric inputs supplies about
10% of the nutrient nitrogen to Galveston Bay
In 1996.

Wade 2002. Galveston State of the Bay 8.



Atmospheric Loading: Comparison
to Other Studies

Table 1. Companson of nutnent nitrogen deposition.

Wet Deposition | Dhrectly Deposition

Wade 2002. Galveston State of the Bay 8.



Spatial and Temporal Trends
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Monthly Flows for January R2=2 161E-6
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TRINITYSTATS Y =-4.648x + 19030

Monthly Flows for April R2=0.0001149
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TRINITYSTATS V= A004%- 940

Monthly Flows for August R2=0.135
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TRINITYSTATS ¥ 16 18K - 30180

Monthly Flows for September R2=0.04841
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TRINITYSTATS ¥ A0 A Teet
Monthly Flows for November
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Specific Conductance at 25C (1969-2004)
95% CI for the Mean
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Average Annual Trinity Flow vs. Sp.Cond. in Bays (1969-2004)
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N-NO3 levels by Major Tributary and Bay (1969-2004)
95% CI for the Mean
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Extremely high N levels in the urbanized end of the San Jacinto Basin — HSC!!




N-NO3 levels by Major Bay System (1969-2004)
95% CI for the Mean
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Major Differences Between XBay and West Bay vs. Rest of Bay System



N-NO3 & NO2 vs. Trinity River Flow (1969-2004)
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NOTE: West and XMAS Bay do not seem to respond to Trinity River Flows




N-NO3 & NO2 vs. Trinity River Flow (1969-2004)
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NOTE: West and XMAS Bay do not seem to respond to Trinity River Flows




Avg N vs. Combined Average Mean Flow Major Tribs.(1969-1995)
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NOTE: West and XMAS Bay do not seem to respond to Combined Upper Bay Flows




Orthophosphorus and Total Phosphorus (1969-2004)
95% CI for the Mean




Phosphorus vs. Combined Annual Mean Flow (1969-1995)

Variable
—@— TBAYP
—#— GBAYP

WBAYP
—& - XBAYP

EBAYP

Mean Annual Combined How (cfs)

Not much of a trend, despite inter-bay differences. Spatially separated despite flows!!
SAME TREND WITH Trinity River flows only analysis.




Chlorophyll-a + Pheophytin (1969-2004)
95% CI for the Mean

NOTE: Galveston Bay has slightly higher levels of phytoplankton.




Annual Avg Chlorol & Pheo vs. Trinity River Flow (1969-2004)
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Not much of a trend, despite inter-bay differences. Spatially separated despite flows!!
T. Bay goes down with flow, G. Bay goes up slightly.




Avg. Chloro+Pheo vs. Avg Combined Flows (1969-1995)
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DITTO: Combined Flows. Spatially separated despite flows!! Where is N coming
from? G. Bay goes up with flow, T. Bay goes down?




Avg Trinity and Galveston Bay Chlorophyll vs. Avg Primary Consumers CPUE
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So are things getting better or worse???



Trinity and Galveston Bays

o
N
)
>
\—r/
o
@
c
o
+
o
S
Q
<
@)

0-

I I I I I I I
1/1/1970 1/1/1975 1/1/1980 1/1/1985 1/1/1990 1/1/1995 1/1/2000 1/1/2005
Date




Chloro/Pheo trends



Stable Isotopes as Tools



Constructing Food Web - tools

e Stomach Analysis

e Stable Isotope Analysis

— Long-term patterns and information on food
items and trophic position possible

— Little or no taxonomic detall



Atmospheric
Depostion

FW Inflow
Runoff

Particulate Fractions

Marsh
Plants

Benthos

What we have less or
no data for marsh

plants, phytoplankton
Benthos = major link!!

Groundwater Point Sources

d
. . 7
Dissolved Fractions Surface

7
Water /qc---- -7

Detritus/Sediment




Isotopes

e |sotopes —atoms
w/ different # of
neutrons

e Different atomic

weights

» Termed heavy &
light

» React differently in
Kinetic reactions

(Fry 2006)



Stable Isotopes

13C 15N
e Determines primary ¢ ldentifies trophic
source of nutrition position
»>C;&C, »Enriched as trophic
photosynthesis level increases (3 to
(terrestrial plants & 4%0)
marsh grasses) »EXxcretion of the
»Minimally enriched lighter isotopes
with trophic level through metabolic

(<1%,0) processes



Stable Isotope Analysis

Stable isotopes are chemical isotopes that are not radioactive. About 2/3rds of elements have more
than one stable isotope. Different stable isotopes of the same element have the same chemical
characteristics and therefore behave almost identically. The mass differences, due to a
difference in the number of neutrons, result in partial separation of the light isotopes from
the heavy isotopes during chemical reactions (isotope fractionation



LAGUNA MADRE - PLANTS AND ANIMALS
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From Fry 2006. Fig. 5.4. Conceptual model of carbon flow in the Texas seagrass meadows, with only two carbon
sources present, seagrass and phytoplankton (P.L. Parker, personal communication, ca. 1976).




Fry 2006. Chapter 5. Fig. E. As previous figure, but with added data from the second round of sampling.



(Fry 2006). Fig. 3.8. Effects of
species introductions measured
in lake ecosystems.
Introduction of nearshore bass
species forces the native top
predator, lake trout, offshore.

Reflecting this spatial
displacement, lake trout diets
shift towards feeding in a more
pelagic food web (as measured
by lower 613C) and at a lower
trophic level (as measured by
lower 61°N; with 61°N
translated into the y-axis
“trophic level” in this figure).
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* d15N becomes enriched
about 2.2 to 3.4 per mil per
trophic level.

Can use to estimate trophic
level.

pelagic littoral



Fry (2006). Fig. 3.6. 6'°N values of algae in Moreton Bay, Australia where the city of Brisbane
occupies the western shore. High 31°N values along the western shore indicate N pollution
inputs from watershed rivers and local sewage treatment facilities.



Mechanism

e Volatilization of ammonia and
denitrification of wastewater N sources
removes “N at a faster rate than °N

 Remaining nitrate from wastewater that
enters an aquifer or waterbody typically
has d *°N values between +10 and +20
per mil vs. natural background levels of +2
and +8 per mil.
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Significance

* No comprehensive stable isotope research
from Galveston Bay

»Holt and Ingall (2000)
»Spotted seatrout

»Gleason (1986) & Fry (2008)
»Brown shrimp

« Ecosystem approach to estuarine
management
»Data needed on dietary habits

»Use of models
»Ecopath with Ecosim (EwWE)



Study Location
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Study Populations

Fish species
cromis (< 198) - Pcs
cromis (199-318) - Pcm
cromis (= 319) — Pcl

. undulatus (= 136) - Mus
. undulatus (137-226) - Mum
. undulatus (= 227) - Mul

nebulosus (< 216) - Cns
nebulosus (217-380) -Cnm
nebulosus (= 381) - Cnl

. arenarius (< 99) - Cas
. arenarius (100-198) - Cam
. arenarius (= 199) - Cal

Fish species cont.
S. ocellatus (< 276) - Sos
S. ocellatus(277-518) - Som
S. ocellatus (= 519) - Sol

L. xanthurus (< 136) - Lxs
L. xanthurus (> 136) — Lxl

Primary productivity
Spartina alterniflora
Halodule wrightii
Benthic algae
Particulate matter (PM)
Vegetative detritus (S.
alterniflora)

S. alterniflora epiphytes

(Martinez-Andrade et al. 2005)



Field Methods

e Sampling
methods
> Bay trawl
» Bag seine
» Gill net
» Chlorophyll filter
» Plant removal
» Algae scraping

o Water quality

parameters
» D.O.

» Temp.

» Turbidity

» Salinity

Identifying and measuring catch to TL (mm)



Storage Methods

Cryogenic vials

e Samples stored in cryogenic vials
» Fish — sampled mid dorsal region

» Plankton — used chlorophyll filter, collected on
glass fiber filter

e Storage
»In field, — portable liquid N, vats
>In lab — Stored in - 80°C freezer in lab



Lab Methods

 Freeze-dried
 Ground w/ SPEX CertiPrep
8000D Mixer/Mill
 Processed at The Stable
Isotope Lab at the
Univ. of Georgia
w/ a Carlo Erba CHN
Elemental Analyzer and
a Finnigan Delta C mass

SpeCtrOmeter
LABCONCO FreeZone freeze-drier



DEIEWAIEWATES

Stable Isotope Analysis

¢ OX = [(Rsample/ Rstandard) o 1] X 1000
»R = ratio of heavy to light isotope
»Ex: 13C/12C or 15SN/“N
» Standards = PeeDee Belemnite and N,

 Mean of isotopic values
e Scatterplot of isotopic values




Results

Number of

Bay Samples
Christmas 46
East 42
Galveston 42
Trinity 33
West 56

Total 219



Preliminary Data: (Crossen et al. 2009 State of the Bay) - poster
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615N and &13C values for 17 different species taken from the Galveston Bay estuary, TX. Fas: F. aztecus (£ 75 mm);
Csas: C. sapidus (£ 109 mm); Csal: C. sapidus (> 109 mm); Bps: B. patronus (< 152 mm); Bpl: B. patronus (>152 mm);
Am: A. mitchilli; Afl: A. felis (> 155 mm); Bml: B. marinus (> 339 mm), Mces: M. cephalus (£ 233 mm); Mcel: M.
cephalus (> 233 mm); Lr: L. rhomboides; Pcl: P. cromis (2 319 mm); Mus: M. undulatus (£ 136 mm); Mum: M.
undulatus (137 — 226 mm); Mul: M. undulatus (2 227 mm); Cnl: C. nebulosus (2 381 mm); Lxs: L. xanthurus

(£ 136 mm)




Sciaenid Isotopic Data from5 bays in Galveston Bay
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C & N Isotopes

Christmas Bay and West Bay in addition to
having lower average N-NO3 & NO2 appear to
have different sources (in-situ??) of nitrogen vs.
Galveston Bay nad Trinity Bay and E. Bay

d °N: G.Bay > T. Bay > E. Bay > W. Bay >
XMas

Food webs driven by different sources of N. In
different parts of the bay!

Trinity Bay and Galveston Bay — anthropogenic
sources (point source and non-point sources??)

Note: West Bay and Xmas Bay hydrologically
Isolated.



Utility of Stable Isotope Studies

 Methods to identify eutrophication caused by
iIncreased anthropogenic N loading would help
managers preserve critical habitats

* Use of stable N isotope ratios can be used to
track wastewater N (& other anthropogenic
sources) and therefore provide one such method

 Direct detection of wastewater N In estuarine
niota should provide a means to i.d. potential
numan sources and manage them.
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