You may use the information and images contained in this document for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include proper citation. If material is used for other purposes, you must obtain written permission from the author(s) to use the copyrighted material prior to its use.
Effects of salinity on distribution and epidermal integrity of bottlenose dolphins (*Tursiops truncatus*) in Galveston Bay, Texas

Kristi Fazioli
Environmental Institute of Houston
University of Houston Clear Lake
fazioli@uhcl.edu

Vanessa Mintzer
Galveston Bay Foundation
vmintzer@galvbay.org

Prepared for the 2022 Annual Meeting of the Texas Academy of Sciences

Activities conducted under NOAA Fisheries Scientific Research Permit #23203
Galveston Bay Dolphin Research Program (GDRP)

- Long-term monitoring to study the ecology, behavior and health of the bottlenose dolphin population
- Boat-based surveys since 2013 (standardized monthly since 2016)
- Focus on Upper Galveston Bay
- Photo-Identification
- Catalog: 942+ distinct individuals; ~200 “residents”
Encounter Rates

$d/km = \#$ dolphins sighted per linear km surveyed

- 2016-2019 monthly surveys
- 105 survey days; 6655 km; 2388 dolphins in 355 groups
- Environmental Profiles

Results:
- Average 0.34 d/km range 0.00 – 1.23
- Dolphins found year-round in UGB
Encounter rates (dolphins/km) in Upper Galveston Bay from 2016-2019

- Dolphin Encounter Rate (dolphins/km)
- Temperature (C)
- Salinity (ppt)

Encounter rates (dolphins/km) in Upper Galveston Bay from 2016-2019
Encounter Rates

Multiple Linear Regression

- 80% of variables explained by temperature and salinity
- Breaking point of 23°C when ERs increase
- Positive linear relationship with salinity
 → 0.02 d/km increase with 1.00 ppt increase
Potential health consequences of low salinity exposure
“Freshwater Intoxication”

- Skin lesions = “hydropic degeneration” of the epidermis; may be accompanied by opportunistic fungal or algal growth

- Potential for:
 - Secondary infection
 - Electrolyte imbalance
 - Corneal edema
 - Increase disease and contaminant exposure risk
 - Mortality
Hurricane Harvey Case Study

August 27th, 2017

Skin Lesions

Minimum Prevalence = proportion of identified individuals that exhibited visible lesions

Extent = percentage of each individual’s epidermis covered by lesions

Low Salinity Event (LSE)

- **Pre-Harvey**: SALINITY (PPT)
- **During Harvey LSE**: SALINITY (PPT)
- **Post Harvey LSE**: SALINITY (PPT)

- **Hurricane Harvey LSE**

- **Jun Jul Aug Sep Oct Nov Dec**

- **SALINITY (PPT)**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20

- **Low Salinity Event (LSE)**
 - 11
Skin Lesions

- Prevalence and extent of skin lesions increased from Pre-Harvey to During Harvey LSE (*p<0.05, n=20)
- Lesion extent decreased from During Harvey LSE to Post Harvey LSE (*p<0.05, n=21)
- Lesion prevalence was higher Post Harvey LSE compared to Pre-Harvey (*p<0.05, n=29), but lesion extent did not differ.

*McNemar’s test for paired comparisons
Future Questions

- Effects of repeated freshwater exposure on individual and population health
- Who in the population is the most vulnerable?
- Critical habitats? Salinity refuge?
- Potential effects of climate change and coastal infrastructure projects
Support and Acknowledgements
George Guillen, Jenny Oakley, Shelby Yahn, Sherah McDaniel, and multiple interns and volunteers

Publications