CSCI 5333.2 & 3
Database Management Systems (DBMS)
Spring 2015
Syllabus, Information and Schedule
by K. Yue

1. General Information

CSCI 5333.2 DBMS Class number: 24231 T 7:00-9:50pm Delta 136
CSCI 5333.3 DBMS Class number: 24232 W 1:00-3:50pm Delta 241

1.1 Instructor

Dr. Kwok-Bun Yue, Professor of Computer Science and Computer Information Systems
Delta 163, 281-283-3864, yue at uhcl.edu; URL: http://dcm.uhcl.edu/yue/
Office hour: T 4:15-6:15, W 4-6, walk-in or appointment.

1.2 Teaching Assistant

Puli Sindhu, Email: PuliS0213 at UHCL dot edu. Homework submission should be sent to the TA.
Office hours: (Draft)
Tuesday 2:00pm - 7:00pm
Wednesday 10:00am - 1:00pm
Thursday 1:00pm - 7:00pm

1.3 UHCL Quality Enhancement Plan (QEP) Motto: Applied Critical Thinking (ACT) for Lifelong Learning and Adaptability

This course has been authorized by UHCL as an Applied Critical Thinking (ACT) Course which means that in addition to learning about the specified course content, students will be engaged with some or all of the Elements of Thought and Universal Intellectual Standards of critical thinking. The objective of an ACT course is to develop the student's ability to become skilled at analysis and evaluation by applying a set of intellectual tools that may be effectively used across all disciplines (as well as to the student's personal life). Based on the Foundation for Critical Thinking model (http://www.criticalthinking.org/), critical thinking involves thinking for a purpose, asking questions, using information, applying concepts, drawing inferences and conclusions, identifying assumptions, anticipating implications and consequences, and recognizing points of view. The Universal Intellectual Standards that are applied to these Elements of Thought of critical thinking in order to develop Intellectual Traits include clarity, accuracy, precision, relevance, depth, breadth, logic, significance, and fairness.

Critical Thinking In Computer Science in General and Database in Particular

Computer science is the scientific and practical study of computation and its applications. Its scope is well agreed upon. For example, in Wikipedia, it is "the systematic study of the feasibility, structure, expression, and mechanization of the methodical procedures (or algorithms) that underlie the acquisition, representation, processing, storage, communication of, and access to information." A thorough understanding and precise specification of the problem domain through modeling, with a clear understanding of all underlying assumptions, is a prerequisite for effectively use computer science to construct a computer-based solution. All elements of thought of critical thinking are essential in every step of the elaboration and modeling of the problem, and design, implementation, and maintenance of a computer-based solution. In particular, information is usually stored permanently in database. In database, critical thinking is integrated in the process of data modeling, logical design, and data manipulation, the process to construct data-driven solutions. The central question is how to store and retrieve permanent data effectively.

Fundamental and Powerful Concepts (FPC) of the Course
In ACT vocabulary, fundamental and powerful concepts form the foundation that permeates and unites a course. In our course, such concepts are:

1. *Data modeling* for thoroughly understanding and precisely specifying problem requirements, assumptions, and constraints.
2. *Database design* for constructing database solution to satisfy the data model.
3. *Data manipulation* for updating and accessing information stored in the database solution.

Please see Section 5 below for more details.

1.4 Laboratory Administrations

You may address account and software problems of the DCM server to the systems administrator, *Ms. Krishani Abeysekera.*

1.5 Other Useful Information

- UHCL emergency hot line (to check weather related closing, for example): 281-283-2221.

1.6 Textbooks

1.7 Course Description

From Catalog: Prerequisite: CSCI 4333. Data base management systems (DBMS), relational DBMS, object-oriented DBMS, knowledge base management system, data base language, query optimization, security and integrity, concurrency control and recovery, design theory of data bases. Laboratory instruction.

1.8 Student Learning Outcomes (SLO)

After completing the course, the students are expected to be able to

1. *Clearly and precisely* model problems using various conceptual design approaches with *all elements of thought in critical thinking* (such as *purpose, questions, information* and *assumption*) using a modeling language such as ER or UML Class diagrams.
2. Understand the *precise concepts* and issues associated with designing a relational database (e.g. normalization, good decomposition, foreign keys).
3. Comprehend various normal forms and their uses in *logical inferences* in database design.
4. Apply *relevant* query language *concepts* and techniques to *accurately* answer queries (*question*).
5. Understand physical database design *concepts* and issues (e.g. indexing).
6. Understand some of the important *relevant* issues (e.g. ACID, SQL transactions) in transaction processing, concurrency control, and database recovery.
7. Understand some of the advanced topics in databases, their *purposes and relevance* (e.g. XML).

Note: The italicized portion of the SLO are related to critical thinking. Please see Section 5 for more details.

1.9 Prerequisites

The following courses or their equivalent are required:

- CSCI 3333 Data Structures
- CSCI 4333 Design of Database Systems

Languages: The course use MySQL and PHP. You are expected to know basic SQL but no prior PHP knowledge is assumed.

1.10 Course Format

Traditional lectures, homework and programming assignments.

2. Course Policies and Guidelines

2.1 General Policies

1. Classroom conduct:
 - You are encouraged to ask a lot of questions in the classroom. Active participation is an essential component in any kind of learning.
 - Be polite to your classmates. Please do not chat with your neighbors during classes.
1. Mobile phones and pagers should be turned off during classes.
 If you must multi-task, keep it quiet.

2. Assignments:
 - Assignments are due at the beginning of classes. No exception. Assignments turned in after the beginning of classes will be considered as late.
 - Late assignments are accepted with a penalty of 20% deduction per week day after the due date. No late assignment will be accepted one week after the due date. The last assignment cannot be late.
 - Make sure that you follow the submission guidelines for programming assignments. Failure to do so will result in assignments not graded.
 - For consistency, if you have a dispute in homework or project grading, discuss it with the TA first.

3. Course management:
 - This is a Web-assisted course with no paper class notes. However, this course does not use Blackboard of UHCL.
 - You are encouraged to communicate with me using email. However, I do not respond to anonymous email.

4. Examinations:
 - No make-up exam except in verified emergencies with immediate notification.

5. Others:
 - No incomplete grade or administrative withdrawal under nearly all situations.
 - UHCL Information about withdrawals, appeals, GPA, repeated courses, the 6 drop rule, etc. can be found in the general program requirement section: http://www.uhcl.edu/XDR/Render/catalog/archives/125/06/%23A0110.
 - Students with disabilities and/or special requirements should discuss their needs with the instructor as soon as possible. See UHCL Disability Service.

Tips:

1. Check the course Web page regularly. Check the course Website frequently and read the class lectures beforehand.
2. I check email frequently during the week days. Be sure to write a good subject heading for your email so my email filter won't consider it junk and I can relate to it quickly. Check notes on managing email.
3. If you have problems with your accounts, you may want to contact the systems administrator directly by sending them an email and copying it to me. However, do not ask her questions about your homework. Instead, ask me.
4. Software development is time consuming. Start early and plan well ahead. Ask a lot of questions.
5. Procrastination usually results in poor grades.
6. If you expect any potential problems, consult me as soon as possible so I may help you.
7. Assignments and examinations will be thrown away one month after the final examination week. Be sure to claim them on time.

2.2 Attendance

Students are expected to attend class regularly and actively participate in classroom discussions.

2.3 Academic Honesty

Penalty on cheating will be extremely severe. Standard academic honesty procedure will be strictly followed. Use your best judgment. If you are not sure about certain activities, consult the instructor. See: http://prtl.uhcl.edu/portal/page/portal/PRV/FORMS_POLICY_PROCEDURES/STUDENT_POLICIES/Academic_Honesty_Policy

The UHCL Academic Honesty Policy will be strictly adhered to. The honesty code section state:

The Honesty Code is the university community's standard of honesty and is endorsed by all members of the University of Houston-Clear Lake academic community. It is an essential element of the University’s academic credibility. It states:

I will be honest in all my academic activities and will not tolerate dishonesty.

Academic honesty is integral to university education. Students are advised to thoroughly understand UHCL academic honesty policy.

2.4 Academic Adjustment Policy

The University of Houston System complies with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, pertaining to the provision of reasonable academic adjustments/auxiliary aids for students with a disability. In accordance with Section 504 and ADA guidelines, each University within the System strives to provide reasonable academic adjustments/auxiliary aids to students who request and require them. If you believe that you have a disability requiring an academic adjustments/auxiliary aid, please contact your University's student disability services center.

2.5 Assessment for Accreditation

The School of Science and Computer Engineering may use assessment tools in this course and other courses for
curriculum evaluation. Educational assessment is defined as the systematic collection, interpretation, and use of information about student characteristics, educational environments, learning outcomes, and client satisfaction to improve program effectiveness, student performance, and professional success. This assessment will be related to the learning objectives for each course and individual student performance will be disaggregated relative to these objectives. This disaggregated analysis will not impact student grades, but will provide faculty with detailed information that will be used to improve courses, curriculum, and student performance.

3. Grading Policy

Grades will be assigned based solely on homework and examination scores. No other factors will be considered. In particular, students have requested me to reconsider their grades using the following reasons in the past:

- Expected a higher grade
- Good course participation
- Good improvement during the semester
- Have put in extra efforts
- Need to avoid probation
- Financial needs
- Loss of scholarship
- Loss of job opportunity
- Loss of practical training opportunity
- Need to graduate
- Company relocation
- Immigration status needs
- Family needs
- Sickness during the semester
- and many other.

These requests had all been declined politely but firmly.

There will also be no 'special project' that you can work on to improve your grades after the final examination. Anything I offer to one student will be offered to the entire class.

Total score is computed using the following percentages:

Homework: 30%
Mid-Term Exam: 35%
Final Exam: 35%

Last Day to Drop/Withdraw: November 10, 2014

Grade Assignment Table

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>[92..100]</td>
<td>A</td>
</tr>
<tr>
<td>[90..92)</td>
<td>A-</td>
</tr>
<tr>
<td>[87..90)</td>
<td>B+</td>
</tr>
<tr>
<td>[83..87)</td>
<td>B</td>
</tr>
<tr>
<td>[80..83)</td>
<td>B-</td>
</tr>
<tr>
<td>[77..80)</td>
<td>C+</td>
</tr>
<tr>
<td>[73..77)</td>
<td>C</td>
</tr>
<tr>
<td>[70..73)</td>
<td>C-</td>
</tr>
<tr>
<td>[67..70)</td>
<td>D+</td>
</tr>
<tr>
<td>[63..67)</td>
<td>D</td>
</tr>
<tr>
<td>[60..63)</td>
<td>D-</td>
</tr>
<tr>
<td>[0..60)</td>
<td>F</td>
</tr>
</tbody>
</table>

4. Course Syllabus and Schedule

The syllabus is tentative. Actual contents and order of coverage may change. There will be around 9 homework assignments, the actual number is subjected to changes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Contents</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week #1: 1/20 (section 2), 1/21</td>
<td>Introduction and overview</td>
<td>How to succeed in the class</td>
</tr>
</tbody>
</table>
| (section 3) | Introduction: class work
Read Chapters 1 and 2. | |
| --- | --- | --- |
| Week #2: 1/27, 1/28 | Review of the relational model.
Introduction to data modeling and database design | Introduction to DB Architecture.
Introduction to DB Modeling.
Read Chapters 3 and 10.
Homework #0 due |
| Week #3: 2/3, 2/4 | Data modeling using UML | Introduction to UML/DB Modeling.
Toy library sample class diagram, in vsd.
Read Chapters 7 (ER) and 8 (ER) |
| Week #4: 2/10, 2/11 | UML modeling
Mapping UML data models to relational schema | Mapping UML class diagrams to relational schema.
Read Chapter 9.
Homework #1 due |
| Week #5: 2/17, 2/18 | Relational Algebra, and Relational Calculus | Introduction to the relational model.
Relational Algebra.
Relational Calculus
Exercise for query languages
Read Chapter 6
Homework #2 due |
| Week #6: 2/24, 2/25 | Introduction to SQL
SQL DDL and DML
Introduction to MySQL | An Introduction to SQL
Read Chapter 4
Homework #3 due |
| Week #7: 3/3, 3/4 | Advanced SQL
Web database developing with MySQL and PHP | PHP MySQL Web Development
Read Chapter 14
Homework #4 due |
| Week #8: 3/10, 3/11 | Mid-term examination | Homework #5 due |
| Week #9: 3/17, 3/18 | Happy Spring Break | SQL Programming
Read Chapter 5 |
| Week #10: 3/24, 3/25 | Web database developing with MySQL and PHP | SQL Programming
Read Chapter 5 |
| Week #11: 3/31, 4/1 | SQL Programming
Design principles of DB Systems | Good and bad database design,
Read Chapter 15
Homework #6 due |
| Week #12: 4/7, 4/8 | Normalization theory I
Normal forms | Normalization
Read Chapter 15
Homework #7 due. |
| Week #13: 4/14, 4/15 | Normalization theory II | Normalization
Read Chapter 15 |
| Week #14: 4/32, 4/22 | Physical DB architecture and design
Concurrent control and transaction management | Physical DB: A brief introduction
Introduction to CC & TM
Read Chapters 15, 16, 20 & 21
Homework #8 due |
| Week #15: 4/28, 4/29 | XML and databases | Introduction to XML
Introduction to DTD
Introduction to XPath
Introduction to XQuery
Read Chapter 12
Homework #9 (Bonus; 70% of a regular homework) due. |
| Week #16: 5/5, 5/6 | 5/5 Section 2 Final Examination:
(Tuesday) 7:00pm
5/6 Section 3 Final Examination:
(Wednesday) 1:00pm | |
5. Applied Critical Thinking (ACT)

5.1 Vocabulary of Critical Thinking

We use the vocabulary of critical thinking described by Drs. Richard Paul and Linda Elder, including the eight elements of thought and nine universal intellectual standards:

Eight elements of Thought of Critical Thinking:

1. Purpose
2. Question at Issue
3. Information
4. Interpretation and Inference
5. Concepts
6. Assumptions
7. Implications and Consequences
8. Point of View

Nine Universal Intellectual Standards for Critical Thinking:

1. Clarity
2. Accuracy
3. Precision
4. Relevance
5. Depth
6. Breadth
7. Logic
8. Significance
9. Fairness

For more details, see:

5.2 Critical Thinking Process (CTP)

According to the ACT vocabulary we used, there are four major aspects of the Applied Critical Thinking Process, termed as the 4 C’s: curiosity, connections, creativity and communication. In this course, the C in the student learning objectives is connections:

- Making connections to a particular issue or problem: students will use established academic and industrial methodology to model a problem, design a database solution, and manipulate the data.

5.3 Critical Thinking Activities and Assessment

There are two assessment activities (AA) of critical thinking in the course. The evaluation of these activities is used to assess how well critical thinking is incorporated into the course. These assessments will be used as input to the UHCL Critical Thinking database for internal assessment of Critical Thinking, and will not affect your grade of the course.

1. Homework #2: Convert the UML model in HW #1 to relational database design. This homework requires the students to have a precise conceptual understanding of principles of good database design and then use modeling and normalization theory to infer and construct an effective relational schema design.

2. Programming Homework #6: Develop a data-driven Web application using MySQL and PHP. The students will explore and analyze data and interface requirements of the Website and develop SQL queries to provide the required data questions.

The related Student Learning Outcomes (SLO) and Fundamental and Powerful Concepts (FPC):

<table>
<thead>
<tr>
<th>Activity</th>
<th>SLO</th>
<th>FPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA #1</td>
<td>2,3</td>
<td>1,2</td>
</tr>
<tr>
<td>AA #2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

The assessment criteria for the AA:
<table>
<thead>
<tr>
<th>Assessment Activity</th>
<th>Assessment Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unacceptable</td>
</tr>
<tr>
<td>AA #1</td>
<td>[0%,85%)</td>
</tr>
<tr>
<td>AA #2</td>
<td>[0%,85%)</td>
</tr>
</tbody>
</table>

Overall, if 70% or above of students are evaluated to be acceptable or excellent in each activity, as well as the average of all activities, the outcomes will be deemed acceptable. Overall, the instructor will evaluate the ACT content, activities, and assessment of the course and make necessary adjustment.