COURSE SYLLABUS

YEAR COURSE OFFERED: 2016

SEMESTER COURSE OFFERED: SPRING

DEPARTMENT: BIOLOGY

COURSE NUMBER: 2102

NAME OF COURSE: Anatomy and Physiology II Laboratory

NAME OF INSTRUCTOR: TBD

The information contained in this class syllabus is subject to change without notice. Students are expected to be aware of any additional course policies presented by the instructor during the course.

Learning Objectives
Upon successful completion of this course, students will be able to

1. Develop a vocabulary of terminology to effectively communicate and discuss information related to the anatomy and physiology of the cardiovascular, lymphatic, respiratory, digestive, urinary and reproductive systems of the human body.
2. Recognize the anatomical structures of the human body and explain the physiological functions of these structures.
3. Recognize and explain the role of homeostasis in the normal functioning of the cardiovascular, respiratory, digestive, urinary and reproductive systems.
4. Recognize and describe the interrelationships within and between anatomical and physiological systems of the human body.
5. Synthesize ideas to make connections between knowledge of anatomy and physiology and real-world situations, including healthy lifestyle decisions and diseases.
6. Present anatomical and physiological data in graphs and figures
7. Work with peers to apply content knowledge in problem solving
8. Effectively communicate solutions and reasoning to classmates and course instructor through presentations and lab reports.

Core Objectives (CO)
Anatomy and Physiology II Laboratory addresses the following core objectives to ensure students develop the essential knowledge and skills they need to be successful in college, in a career, in their communities, and in their lives.

- Critical Thinking Skills - to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information
COURSE SYLLABUS

- Communication Skills - to include effective development, interpretation and expression of ideas through written, oral and visual communication
- Empirical and Quantitative Skills - to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions
- Team Work - to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

Major Assignments/Exams
The course components below are designed to meet the course objectives.

- **Quizzes**: pre-laboratory quizzes will be given prior to each experiment during the semester; questions will be multiple choice, short answer or essay and will cover material important to understanding the laboratory exercises
- **Laboratory reports**: written summaries of each laboratory exercise, including the objectives, hypotheses, experimental design, methods, data collected, analysis of results, and discussion/conclusion

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>CO</th>
<th>Assessment Methods</th>
<th>Criteria/Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demonstrate mastery of the fundamental concepts of evolutionary biology: theory, mechanisms, speciation and classification.</td>
<td>CT, EQS, COM, TW</td>
<td>Pre-lab quizzes and post-lab analysis and reports</td>
<td>≥70% of students will correctly answer >70% of the questions on the pre-lab quizzes; ≥70% of students will correctly analyze and interpret results of lab experiments.</td>
</tr>
<tr>
<td>2. Explain the molecular activity involved with DNA structure and function and its role in inheritance patterns.</td>
<td>CT, EQS, COM, TW</td>
<td>Pre-lab quizzes and post-lab analysis and reports</td>
<td>≥70% of students will correctly answer >70% of the questions on the pre-lab quizzes; ≥70% of students will correctly analyze and interpret results of lab experiments.</td>
</tr>
<tr>
<td>3. Understand and define the role of mitosis and meiosis in genetics.</td>
<td>CT, EQS, COM, TW</td>
<td>Pre-lab quizzes and post-lab analysis and reports</td>
<td>≥70% of students will correctly answer >70% of the questions on the pre-lab quizzes; ≥70% of students will correctly analyze and interpret results of lab experiments.</td>
</tr>
</tbody>
</table>
4. Relate ecological principles of populations, communities and ecosystems to the conservation of biodiversity.
 - **CT, EQS, COM, TW**
 - Pre-lab quizzes and post-lab analysis and reports
 - ≥70% of students will correctly answer >70% of the questions on the pre-lab quizzes; ³70% of students will correctly analyze and interpret results of lab experiments.

5. Work with peers to apply content knowledge in problem solving.
 - **EQS, TW**
 - Laboratory experiments are performed in assigned groups with each group member responsible for a key role
 - ≥75% of students will participate and provide key components to each lab exercise of the group.

6. Effectively communicate solutions and reasoning to classmates and course instructor.
 - **COM**
 - Peer assessment of laboratory exercises and analyses
 - ≥75% of students will complete and present lab reports on each experiment.

Required Reading
Laboratory manual TBD (e.g., Marieb E. N., Smith L.A. 2016. *Anatomy and Physiology Laboratory Manuel, 11th ed.*, Pearson)

Recommended Reading
N/A

List of discussion/laboratory topics
- Physiology of circulation, measuring blood pressure
- The structure of the heart, and major blood vessels
- Recording the electrical activity of the heart
- Cardiovascular reflexes
- The components of the respiratory system
- Pulmonary function testing
- Integration between the functioning of the cardiovascular system and respiratory system at rest and during exercise
- Gas transport
- The components of the digestive system
- The actions of digestive enzymes
- Urinary and reproductive system anatomy
- Osmolarity and regulation of body fluid concentration